Tight bounds for online coloring of basic graph classes

Susanne Albers, Sebastian Schraink

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

We resolve a number of long-standing open problems in online graph coloring. More specifically, we develop tight lower bounds on the performance of online algorithms for fundamental graph classes. An important contribution is that our bounds also hold for randomized online algorithms, for which hardly any results were known. Technically, we construct lower bounds for chordal graphs. The constructions then allow us to derive results on the performance of randomized online algorithms for the following further graph classes: Trees, planar, bipartite, inductive, bounded-Treewidth and disk graphs. It shows that the best competitive ratio of both deterministic and randomized online algorithms is ϵ(log n), where n is the number of vertices of a graph. Furthermore, we prove that this guarantee cannot be improved if an online algorithm has a lookahead of size O(n/ log n) or access to a reordering buffer of size n1-ϵ, for any 0 < ϵ ≤ 1. A consequence of our results is that, for all of the above mentioned graph classes except bipartite graphs, the natural First Fit coloring algorithm achieves an optimal performance, up to constant factors, among deterministic and randomized online algorithms.

Original languageEnglish
Title of host publication25th European Symposium on Algorithms, ESA 2017
EditorsChristian Sohler, Christian Sohler, Kirk Pruhs
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959770491
DOIs
StatePublished - 1 Sep 2017
Event25th European Symposium on Algorithms, ESA 2017 - Vienna, Austria
Duration: 4 Sep 20176 Sep 2017

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume87
ISSN (Print)1868-8969

Conference

Conference25th European Symposium on Algorithms, ESA 2017
Country/TerritoryAustria
CityVienna
Period4/09/176/09/17

Keywords

  • Graph coloring
  • Lower bounds
  • Online algorithms
  • Randomization

Fingerprint

Dive into the research topics of 'Tight bounds for online coloring of basic graph classes'. Together they form a unique fingerprint.

Cite this