Three Operator Splitting with a Nonconvex Loss Function

Alp Yurtsever, Varun Mangalick, Suvrit Sra

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

We consider the problem of minimizing the sum of three functions, one of which is nonconvex but differentiable, and the other two are convex but possibly nondifferentiable. We investigate the Three Operator Splitting method (TOS) of Davis & Yin (2017) with an aim to extend its theoretical guarantees for this nonconvex problem template. In particular, we prove convergence of TOS with nonasymptotic bounds on its nonstationarity and infeasibility errors. In contrast with the existing work on nonconvex TOS, our guarantees do not require additional smoothness assumptions on the terms comprising the objective; hence they cover instances of particular interest where the nondifferentiable terms are indicator functions. We also extend our results to a stochastic setting where we have access only to an unbiased estimator of the gradient. Finally, we illustrate the effectiveness of the proposed method through numerical experiments on quadratic assignment problems.

Original languageEnglish
Title of host publicationProceedings of the 38th International Conference on Machine Learning, ICML 2021
PublisherML Research Press
Pages12267-12277
Number of pages11
ISBN (Electronic)9781713845065
StatePublished - 2021
Externally publishedYes
Event38th International Conference on Machine Learning, ICML 2021 - Virtual, Online
Duration: 18 Jul 202124 Jul 2021

Publication series

NameProceedings of Machine Learning Research
Volume139
ISSN (Electronic)2640-3498

Conference

Conference38th International Conference on Machine Learning, ICML 2021
CityVirtual, Online
Period18/07/2124/07/21

Fingerprint

Dive into the research topics of 'Three Operator Splitting with a Nonconvex Loss Function'. Together they form a unique fingerprint.

Cite this