Three-dimensional analyses of vascular network morphology in a murine lymph node by X-ray phase-contrast tomography with a 2D Talbot array

Florian L. Schwarzenberg, Paul Schütz, Jörg U. Hammel, Mirko Riedel, Jasmin Bartl, Sharareh Bordbari, Svea Celina Frank, Bernd Walkenfort, Madleen Busse, Julia Herzen, Christian Lohr, Clemens Wülfing, Stephan Henne

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

With growing molecular evidence for correlations between spatial arrangement of blood vasculature and fundamental immunological functions, carried out in distinct compartments of the subdivided lymph node, there is an urgent need for three-dimensional models that can link these aspects. We reconstructed such models at a 1.84 µm resolution by the means of X-ray phase-contrast imaging with a 2D Talbot array in a short time without any staining. In addition reconstructions are verified in immunohistochemistry staining as well as in ultrastructural analyses. While conventional illustrations of mammalian lymph nodes depict the hilus as a definite point of blood and lymphatic vessel entry and exit, our method revealed that multiple branches enter and emerge from an area that extends up to one third of the organ’s surface. This could be a prerequisite for the drastic and location-dependent remodeling of vascularization, which is necessary for lymph node expansion during inflammation. Contrary to corrosion cast studies we identified B-cell follicles exhibiting a two times denser capillary network than the deep cortical units of the T-cell zone. In addition to our observation of high endothelial venules spatially surrounding the follicles, this suggests a direct connection between morphology and B-cell homing. Our findings will deepen the understanding of functional lymph node composition and lymphocyte migration on a fundamental basis.

Original languageEnglish
Article number947961
JournalFrontiers in Immunology
Volume13
DOIs
StatePublished - 29 Nov 2022

Keywords

  • 3D model
  • B-cell follicle
  • capillary density
  • high endothelial venules (HEVs)
  • lymph node vascularization
  • lymphocyte homing
  • murine lymph nodes
  • x-ray phase-contrast tomography

Fingerprint

Dive into the research topics of 'Three-dimensional analyses of vascular network morphology in a murine lymph node by X-ray phase-contrast tomography with a 2D Talbot array'. Together they form a unique fingerprint.

Cite this