## Abstract

In a weak-coupling effective field theory framework we study quarkonium dis-sociation induced by inelastic scattering with partons in the medium. This is the dominant dissociation process for temperatures such that the Debye mass is larger than the binding energy. We evaluate the dissociation cross section and the corresponding thermal decay width. At leading order we derive a convolution formula relating the two, which is consistent with the optical theorem and QCD at finite temperature. Bound state effects are systematically included. They add contributions to the cross section and width that are beyond a quasi-free approximation, whose validity is critically reviewed. For temperatures such that the Debye mass is smaller than the binding energy, the dominant dissociation mechanism is gluo-dissociation consisting in quarkonium dissociation induced by the absorbtion of a gluon from the medium. We calculate the gluo-dissociation cross section and width at next-to-leading-order accuracy.

Original language | English |
---|---|

Article number | 130 |

Journal | Journal of High Energy Physics |

Volume | 2013 |

Issue number | 5 |

DOIs | |

State | Published - 2013 |

## Keywords

- Heavy Quark Physics
- Quark-Gluon Plasma
- Thermal Field Theory