The surrogate matrix methodology: A reference implementation for low-cost assembly in isogeometric analysis

Daniel Drzisga, Brendan Keith, Barbara Wohlmuth

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

A reference implementation of a new method in isogeometric analysis (IGA) is presented. It delivers low-cost variable-scale approximations (surrogates) of the matrices which IGA conventionally requires to be computed by element-scale quadrature. To generate surrogate matrices, quadrature must only be performed on a fraction of the elements in the computational domain. In this way, quadrature determines only a subset of the entries in the final matrix. The remaining matrix entries are computed by a simple B-spline interpolation procedure. We present the modifications and extensions required for a reference implementation in the open-source IGA software library GeoPDEs. The exposition is fashioned to help facilitate similar modifications in other contemporary software libraries. • The surrogate matrix methodology is implemented in GeoPDEs. • Poisson's problem is considered. • The matrix assembly time is significantly reduced at negligible cost to solution accuracy.

Original languageEnglish
Article number100813
JournalMethodsX
Volume7
DOIs
StatePublished - 2020

Keywords

  • High order
  • Isogeometric analysis
  • Reference implementation
  • Surrogate matrix method for isogeometric analysis
  • Surrogate numerical methods

Fingerprint

Dive into the research topics of 'The surrogate matrix methodology: A reference implementation for low-cost assembly in isogeometric analysis'. Together they form a unique fingerprint.

Cite this