TY - GEN
T1 - The sigma.7 haptic interface for MiroSurge
T2 - 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics, IROS'11
AU - Tobergte, Andreas
AU - Helmer, Patrick
AU - Hagn, Ulrich
AU - Rouiller, Patrice
AU - Thielmann, Sophie
AU - Grange, Sébastien
AU - Albu-Schäffer, Alin
AU - Conti, François
AU - Hirzinger, Gerd
PY - 2011
Y1 - 2011
N2 - This paper presents the design and control of the sigma.7 haptic device and the new surgical console of the MiroSurge robotic system. The console and the haptic devices are designed with respect to requirements in minimally invasive robotic surgery. Dedicated left and right handed devices are integrated in an operator console in an ergonomic configuration. The height of the whole console is adjustable, allowing the surgeon seated and standed operation. Each of the devices is fully actuated in seven degrees of freedom (DoF). A parallel mechanism with 3 DoF actuates the translational motion and an attached wrist with 3 intersecting axis drives the rotations of the grasping unit. This advantageous design leads to inherently decoupled kinematics and dynamics. Cartesian forces are 20 N within the translational workspace, which is a sphere of about 120 mm diameter for each device. The rotational wrist of the device covers the whole workspace of the human hand and provides maximum torques of about 0.4 Nm. The grasping unit can display forces up to 8 N. An integrated force/torque sensor is used to increase the transparency of the devices by reducing inertia and friction. It is theoretically shown that the non-linear closed loop system behaves like a passive system and experimental results validate the approach. The sigma.7 haptic devices are designed by Force Dimension in cooperation with the German Aerospace Center (DLR). DLR designed the surgical console and integrated the haptic devices in the MiroSurge system.
AB - This paper presents the design and control of the sigma.7 haptic device and the new surgical console of the MiroSurge robotic system. The console and the haptic devices are designed with respect to requirements in minimally invasive robotic surgery. Dedicated left and right handed devices are integrated in an operator console in an ergonomic configuration. The height of the whole console is adjustable, allowing the surgeon seated and standed operation. Each of the devices is fully actuated in seven degrees of freedom (DoF). A parallel mechanism with 3 DoF actuates the translational motion and an attached wrist with 3 intersecting axis drives the rotations of the grasping unit. This advantageous design leads to inherently decoupled kinematics and dynamics. Cartesian forces are 20 N within the translational workspace, which is a sphere of about 120 mm diameter for each device. The rotational wrist of the device covers the whole workspace of the human hand and provides maximum torques of about 0.4 Nm. The grasping unit can display forces up to 8 N. An integrated force/torque sensor is used to increase the transparency of the devices by reducing inertia and friction. It is theoretically shown that the non-linear closed loop system behaves like a passive system and experimental results validate the approach. The sigma.7 haptic devices are designed by Force Dimension in cooperation with the German Aerospace Center (DLR). DLR designed the surgical console and integrated the haptic devices in the MiroSurge system.
UR - http://www.scopus.com/inward/record.url?scp=84455205885&partnerID=8YFLogxK
U2 - 10.1109/IROS.2011.6048043
DO - 10.1109/IROS.2011.6048043
M3 - Conference contribution
AN - SCOPUS:84455205885
SN - 9781612844541
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 3023
EP - 3030
BT - IROS'11 - 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
Y2 - 25 September 2011 through 30 September 2011
ER -