TY - JOUR
T1 - The RamA regulon
T2 - complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum
AU - Shah, Adnan
AU - Blombach, Bastian
AU - Gauttam, Rahul
AU - Eikmanns, Bernhard J.
N1 - Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2018/7/1
Y1 - 2018/7/1
N2 - Corynebacterium glutamicum is an industrial workhorse used for the production of amino acids and a variety of other chemicals and fuels. Within its regulatory repertoire, C. glutamicum possesses RamA which was initially identified as essential transcriptional regulator of acetate metabolism. Further studies revealed its relevance for ethanol and propionate catabolism and also identified RamA to function as global regulator in the metabolism of C. glutamicum. Thereby, RamA acts as transcriptional activator or repressor of genes encoding enzymes which are involved in carbon uptake, central carbon metabolism, and cell wall synthesis. RamA controls the expression of target genes either directly and/or indirectly by constituting feed-forward loop type of transcriptional motifs with other regulators such as GlxR, SugR, RamB, and GntR1. In this review, we summarize the current knowledge on RamA, its regulon, and its regulatory interplay with other transcriptional regulators coordinating the metabolism of C. glutamicum.
AB - Corynebacterium glutamicum is an industrial workhorse used for the production of amino acids and a variety of other chemicals and fuels. Within its regulatory repertoire, C. glutamicum possesses RamA which was initially identified as essential transcriptional regulator of acetate metabolism. Further studies revealed its relevance for ethanol and propionate catabolism and also identified RamA to function as global regulator in the metabolism of C. glutamicum. Thereby, RamA acts as transcriptional activator or repressor of genes encoding enzymes which are involved in carbon uptake, central carbon metabolism, and cell wall synthesis. RamA controls the expression of target genes either directly and/or indirectly by constituting feed-forward loop type of transcriptional motifs with other regulators such as GlxR, SugR, RamB, and GntR1. In this review, we summarize the current knowledge on RamA, its regulon, and its regulatory interplay with other transcriptional regulators coordinating the metabolism of C. glutamicum.
KW - Central metabolism
KW - Corynebacterium glutamicum
KW - Regulator of acetate metabolism RamA
UR - http://www.scopus.com/inward/record.url?scp=85047385589&partnerID=8YFLogxK
U2 - 10.1007/s00253-018-9085-3
DO - 10.1007/s00253-018-9085-3
M3 - Review article
C2 - 29804137
AN - SCOPUS:85047385589
SN - 0175-7598
VL - 102
SP - 5901
EP - 5910
JO - Applied Microbiology and Biotechnology
JF - Applied Microbiology and Biotechnology
IS - 14
ER -