The Probabilistic Robot Kinematics Model and its Application to Sensor Fusion

Lukas Meyer, Klaus H. Strobl, Rudolph Triebel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Robots with elasticity in structural components can suffer from undesired end-effector positioning imprecision, which exceeds the accuracy requirements for successful manipulation. We present the Probabilistic-Product-Of-Exponentials robot model, a novel approach for kinematic modeling of robots. It does not only consider the robot's deterministic geometry but additionally models time-varying and configuration-dependent errors in a probabilistic way. Our robot model allows to propagate the errors along the kinematic chain and to compute their influence on the end-effector pose. We apply this model in the context of sensor fusion for manipulator pose correction for two different robotic systems. The results of a simulation study, as well as of an experiment, demonstrate that probabilistic configuration-dependent error modeling of the robot kinematics is crucial in improving pose estimation results.

Original languageEnglish
Title of host publication2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3263-3270
Number of pages8
ISBN (Electronic)9781665479271
DOIs
StatePublished - 2022
Externally publishedYes
Event2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan
Duration: 23 Oct 202227 Oct 2022

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2022-October
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Country/TerritoryJapan
CityKyoto
Period23/10/2227/10/22

Fingerprint

Dive into the research topics of 'The Probabilistic Robot Kinematics Model and its Application to Sensor Fusion'. Together they form a unique fingerprint.

Cite this