TY - JOUR
T1 - The optimal stimulation pattern for skeletal muscle is dependent on muscle length
AU - Mela, Petra
AU - Veltink, Peter H.
AU - Huijing, Peter A.
AU - Salmons, Stanley
AU - Jarvis, Jonathan C.
PY - 2002/6
Y1 - 2002/6
N2 - Stimulation patterns can be optimized by maximizing the force-time integral (FTI) per stimulation pulse of the elicited muscle contraction. Such patterns, providing the desired force output with the minimum number of pulses, may reduce muscle fatigue, which has been shown to correlate to the number of pulses delivered. Applications of electrical stimulation to use muscle as a controllable biological actuator may, therefore, be improved. Although muscle operates over a range of lengths, optimized patterns have been determined only at optimal muscle length. In this study, the patterns with up to four pulses that produced the highest isometric FTI were determined at 10 muscle lengths for 11 rabbit tibialis anterior muscles. The interpulse intervals (IPIs) used ranged from 4 to 54 ms. At high muscle length, the optimal stimulation pattern consisted of an initial short IPI (doublet) followed by longer IPIs, in agreement with previous studies. However, at low length, the third pulse still elicited more than linear summation (triplet); furthermore, the relative enhancement of the FTI per pulse was considerably larger at low length than at high length, suggesting that optimal stimulation patterns are length dependent.
AB - Stimulation patterns can be optimized by maximizing the force-time integral (FTI) per stimulation pulse of the elicited muscle contraction. Such patterns, providing the desired force output with the minimum number of pulses, may reduce muscle fatigue, which has been shown to correlate to the number of pulses delivered. Applications of electrical stimulation to use muscle as a controllable biological actuator may, therefore, be improved. Although muscle operates over a range of lengths, optimized patterns have been determined only at optimal muscle length. In this study, the patterns with up to four pulses that produced the highest isometric FTI were determined at 10 muscle lengths for 11 rabbit tibialis anterior muscles. The interpulse intervals (IPIs) used ranged from 4 to 54 ms. At high muscle length, the optimal stimulation pattern consisted of an initial short IPI (doublet) followed by longer IPIs, in agreement with previous studies. However, at low length, the third pulse still elicited more than linear summation (triplet); furthermore, the relative enhancement of the FTI per pulse was considerably larger at low length than at high length, suggesting that optimal stimulation patterns are length dependent.
KW - Electrical stimulation
KW - Muscle length
KW - n-lets stimulation pattern
UR - http://www.scopus.com/inward/record.url?scp=0036592599&partnerID=8YFLogxK
U2 - 10.1109/TNSRE.2002.1031976
DO - 10.1109/TNSRE.2002.1031976
M3 - Article
C2 - 12236451
AN - SCOPUS:0036592599
SN - 1534-4320
VL - 10
SP - 85
EP - 93
JO - IEEE Transactions on Neural Systems and Rehabilitation Engineering
JF - IEEE Transactions on Neural Systems and Rehabilitation Engineering
IS - 2
ER -