TY - JOUR
T1 - The Next Step in Galaxy Cluster Strong Lensing
T2 - Modeling the Surface Brightness of Multiply Imaged Sources
AU - Acebron, Ana
AU - Grillo, Claudio
AU - Suyu, Sherry H.
AU - Angora, Giuseppe
AU - Bergamini, Pietro
AU - Caminha, Gabriel B.
AU - Ertl, Sebastian
AU - Mercurio, Amata
AU - Nonino, Mario
AU - Rosati, Piero
AU - Wang, Han
AU - Bolamperti, Andrea
AU - Meneghetti, Massimo
AU - Schuldt, Stefan
AU - Vanzella, Eros
N1 - Publisher Copyright:
© 2024. The Author(s). Published by the American Astronomical Society.
PY - 2024/11/1
Y1 - 2024/11/1
N2 - Overcoming both modeling and computational challenges, we present, for the first time, the extended surface-brightness distribution model of a strongly lensed source in a complex galaxy-cluster-scale system. We exploit the high-resolution Hubble Space Telescope (HST) imaging and extensive Multi Unit Spectroscopic Explorer spectroscopy to build an extended strong-lensing model, in a full multiplane formalism, of SDSS J1029+2623, a lens cluster at z = 0.588 with three multiple images of a background quasar (z = 2.1992). Going beyond typical cluster strong-lensing modeling techniques, we include as observables both the positions of 26 pointlike multiple images from seven background sources, spanning a wide redshift range between 1.02 and 5.06, and the extended surface-brightness distribution of the strongly lensed quasar host galaxy, over ∼78,000 HST pixels. In addition, we model the light distribution of seven objects, angularly close to the strongly lensed quasar host, over ∼9300 HST pixels. Our extended lens model reproduces well both the observed intensity and morphology of the quasar host galaxy in the HST F160W band (with a 0.″03 pixel scale). The reconstructed source shows a single, compact, and smooth surface-brightness distribution, for which we estimate an intrinsic magnitude of 23.3 ± 0.1 in the F160W band and a half-light radius of (2.39 ± 0.03) kpc. The increased number of observables enables the accurate determination of the total mass of line-of-sight halos lying angularly close to the extended arc. This work paves the way for a new generation of galaxy cluster strong-lens models, where additional, complementary lensing observables are directly incorporated as model constraints.
AB - Overcoming both modeling and computational challenges, we present, for the first time, the extended surface-brightness distribution model of a strongly lensed source in a complex galaxy-cluster-scale system. We exploit the high-resolution Hubble Space Telescope (HST) imaging and extensive Multi Unit Spectroscopic Explorer spectroscopy to build an extended strong-lensing model, in a full multiplane formalism, of SDSS J1029+2623, a lens cluster at z = 0.588 with three multiple images of a background quasar (z = 2.1992). Going beyond typical cluster strong-lensing modeling techniques, we include as observables both the positions of 26 pointlike multiple images from seven background sources, spanning a wide redshift range between 1.02 and 5.06, and the extended surface-brightness distribution of the strongly lensed quasar host galaxy, over ∼78,000 HST pixels. In addition, we model the light distribution of seven objects, angularly close to the strongly lensed quasar host, over ∼9300 HST pixels. Our extended lens model reproduces well both the observed intensity and morphology of the quasar host galaxy in the HST F160W band (with a 0.″03 pixel scale). The reconstructed source shows a single, compact, and smooth surface-brightness distribution, for which we estimate an intrinsic magnitude of 23.3 ± 0.1 in the F160W band and a half-light radius of (2.39 ± 0.03) kpc. The increased number of observables enables the accurate determination of the total mass of line-of-sight halos lying angularly close to the extended arc. This work paves the way for a new generation of galaxy cluster strong-lens models, where additional, complementary lensing observables are directly incorporated as model constraints.
UR - http://www.scopus.com/inward/record.url?scp=85210101491&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ad8343
DO - 10.3847/1538-4357/ad8343
M3 - Article
AN - SCOPUS:85210101491
SN - 0004-637X
VL - 976
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 110
ER -