The Morse theory of Čech and Delaunay filtrations

Ulrich Bauer, Herbert Edelsbrunner

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

Given a finite set of points in Rn and a positive radius, we study the Čech, Delaunay-Čech, alpha, and wrap complexes as instances of a generalized discrete Morse theory. We prove that the latter three complexes are simple-homotopy equivalent. Our results have applications in topological data analysis and in the reconstruction of shapes from sampled data. Copyright is held by the owner/author(s).

Original languageEnglish
Title of host publicationProceedings of the 30th Annual Symposium on Computational Geometry, SoCG 2014
PublisherAssociation for Computing Machinery
Pages484-490
Number of pages7
ISBN (Print)9781450325943
DOIs
StatePublished - 2014
Externally publishedYes
Event30th Annual Symposium on Computational Geometry, SoCG 2014 - Kyoto, Japan
Duration: 8 Jun 201411 Jun 2014

Publication series

NameProceedings of the Annual Symposium on Computational Geometry

Conference

Conference30th Annual Symposium on Computational Geometry, SoCG 2014
Country/TerritoryJapan
CityKyoto
Period8/06/1411/06/14

Fingerprint

Dive into the research topics of 'The Morse theory of Čech and Delaunay filtrations'. Together they form a unique fingerprint.

Cite this