The minimum cost connected subgraph problem in medical image analysis

Markus Rempfler, Bjoern Andres, Bjoern H. Menze

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Several important tasks in medical image analysis can be stated in the form of an optimization problem whose feasible solutions are connected subgraphs. Examples include the reconstruction of neural or vascular structures under connectedness constraints. We discuss the minimum cost connected subgraph (MCCS) problem and its approximations from the perspective of medical applications. We propose (a) objective-dependent constraints and (b) novel constraint generation schemes to solve this optimization problem exactly by means of a branch-and-cut algorithm. These are shown to improve scalability and allow us to solve instances of two medical benchmark datasets to optimality for the first time. This enables us to perform a quantitative comparison between exact and approximative algorithms,where we identify the geodesic tree algorithm as an excellent alternative to exact inference on the examined datasets.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer-Assisted Intervention - MICCAI 2016 - 19th International Conference, Proceedings
EditorsLeo Joskowicz, Mert R. Sabuncu, William Wells, Gozde Unal, Sebastian Ourselin
PublisherSpringer Verlag
Pages397-405
Number of pages9
ISBN (Print)9783319467252
DOIs
StatePublished - 2016

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9902 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Fingerprint

Dive into the research topics of 'The minimum cost connected subgraph problem in medical image analysis'. Together they form a unique fingerprint.

Cite this