The Medicago genome provides insight into the evolution of rhizobial symbioses

Nevin D. Young, Frédéric Debellé, Giles E.D. Oldroyd, Rene Geurts, Steven B. Cannon, Michael K. Udvardi, Vagner A. Benedito, Klaus F.X. Mayer, Jérôme Gouzy, Heiko Schoof, Yves Van De Peer, Sebastian Proost, Douglas R. Cook, Blake C. Meyers, Manuel Spannagl, Foo Cheung, Stéphane De Mita, Vivek Krishnakumar, Heidrun Gundlach, Shiguo ZhouJoann Mudge, Arvind K. Bharti, Jeremy D. Murray, Marina A. Naoumkina, Benjamin Rosen, Kevin A.T. Silverstein, Haibao Tang, Stephane Rombauts, Patrick X. Zhao, Peng Zhou, Valérie Barbe, Philippe Bardou, Michael Bechner, Arnaud Bellec, Anne Berger, Hélène Bergès, Shelby Bidwell, Ton Bisseling, Nathalie Choisne, Arnaud Couloux, Roxanne Denny, Shweta Deshpande, Xinbin Dai, Jeff J. Doyle, Anne Marie Dudez, Andrew D. Farmer, Stéphanie Fouteau, Carolien Franken, Chrystel Gibelin, John Gish, Steven Goldstein, Alvaro J. González, Pamela J. Green, Asis Hallab, Marijke Hartog, Axin Hua, Sean J. Humphray, Dong Hoon Jeong, Yi Jing, Anika Jöcker, Steve M. Kenton, Dong Jin Kim, Kathrin Klee, Hongshing Lai, Chunting Lang, Shaoping Lin, Simone L. MacMil, Ghislaine Magdelenat, Lucy Matthews, Jamison McCorrison, Erin L. Monaghan, Jeong Hwan Mun, Fares Z. Najar, Christine Nicholson, Céline Noirot, Majesta O'Bleness, Charles R. Paule, Julie Poulain, Florent Prion, Baifang Qin, Chunmei Qu, Ernest F. Retzel, Claire Riddle, Erika Sallet, Sylvie Samain, Nicolas Samson, Iryna Sanders, Olivier Saurat, Claude Scarpelli, Thomas Schiex, Béatrice Segurens, Andrew J. Severin, D. Janine Sherrier, Ruihua Shi, Sarah Sims, Susan R. Singer, Senjuti Sinharoy, Lieven Sterck, Agnès Viollet, Bing Bing Wang, Keqin Wang, Mingyi Wang, Xiaohong Wang, Jens Warfsmann, Jean Weissenbach, Doug D. White, Jim D. White, Graham B. Wiley, Patrick Wincker, Yanbo Xing, Limei Yang, Ziyun Yao, Fu Ying, Jixian Zhai, Liping Zhou, Antoine Zuber, Jean Dénarié, Richard A. Dixon, Gregory D. May, David C. Schwartz, Jane Rogers, Francis Quétier, Christopher D. Town, Bruce A. Roe

Research output: Contribution to journalArticlepeer-review

1004 Scopus citations


Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ∼ 94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.

Original languageEnglish
Pages (from-to)520-524
Number of pages5
Issue number7378
StatePublished - 22 Dec 2011
Externally publishedYes


Dive into the research topics of 'The Medicago genome provides insight into the evolution of rhizobial symbioses'. Together they form a unique fingerprint.

Cite this