TY - JOUR
T1 - The Impact of Pupil Constriction on the Relationship Between Melanopic EDI and Melatonin Suppression in Young Adult Males
AU - Schöllhorn, Isabel
AU - Stefani, Oliver
AU - Lucas, Robert J.
AU - Spitschan, Manuel
AU - Epple, Christian
AU - Cajochen, Christian
N1 - Publisher Copyright:
© 2024 The Author(s).
PY - 2024/6
Y1 - 2024/6
N2 - The pupil modulates the amount of light that reaches the retina. Not only luminance but also the spectral distribution defines the pupil size. Previous research has identified steady-state pupil size and melatonin attenuation to be predominantly driven by melanopsin, which is expressed by a unique subgroup of intrinsically photosensitive retinal ganglion cells (ipRGCs) that are sensitive to short-wavelength light (~480 nm). Here, we aimed to selectively target the melanopsin system during the evening, while measuring steady-state pupil size and melatonin concentrations under commonly experienced evening light levels (<90 lx). Therefore, we used a five-primary display prototype to generate light conditions that were matched in terms of L-, M-, and S-cone-opic irradiances, but with high and low melanopic irradiances (~3-fold difference). Seventy-two healthy, male participants completed a 2-week study protocol. The volunteers were assigned to one of the four groups that differed in luminance levels (27-285 cd/m2). Within the four groups, each volunteer was exposed to a low melanopic (LM) and a high melanopic (HM) condition. The two 17-h study protocols comprised 3.5 h of light exposure starting 4 h before habitual bedtime. Median pupil size was significantly smaller during HM than LM in all four light intensity groups. In addition, we observed a significant correlation between melanopic weighted corneal illuminance (melanopic equivalent daylight illuminance [mEDI]) and pupil size, such that higher mEDI values were associated with smaller pupil size. Using pupil size to estimate retinal irradiance showed a qualitatively similar goodness of fit as mEDI for predicting melatonin suppression. Based on our results here, it remains appropriate to use melanopic irradiance measured at eye level when comparing light-dependent effects on evening melatonin concentrations in healthy young people at rather low light levels.
AB - The pupil modulates the amount of light that reaches the retina. Not only luminance but also the spectral distribution defines the pupil size. Previous research has identified steady-state pupil size and melatonin attenuation to be predominantly driven by melanopsin, which is expressed by a unique subgroup of intrinsically photosensitive retinal ganglion cells (ipRGCs) that are sensitive to short-wavelength light (~480 nm). Here, we aimed to selectively target the melanopsin system during the evening, while measuring steady-state pupil size and melatonin concentrations under commonly experienced evening light levels (<90 lx). Therefore, we used a five-primary display prototype to generate light conditions that were matched in terms of L-, M-, and S-cone-opic irradiances, but with high and low melanopic irradiances (~3-fold difference). Seventy-two healthy, male participants completed a 2-week study protocol. The volunteers were assigned to one of the four groups that differed in luminance levels (27-285 cd/m2). Within the four groups, each volunteer was exposed to a low melanopic (LM) and a high melanopic (HM) condition. The two 17-h study protocols comprised 3.5 h of light exposure starting 4 h before habitual bedtime. Median pupil size was significantly smaller during HM than LM in all four light intensity groups. In addition, we observed a significant correlation between melanopic weighted corneal illuminance (melanopic equivalent daylight illuminance [mEDI]) and pupil size, such that higher mEDI values were associated with smaller pupil size. Using pupil size to estimate retinal irradiance showed a qualitatively similar goodness of fit as mEDI for predicting melatonin suppression. Based on our results here, it remains appropriate to use melanopic irradiance measured at eye level when comparing light-dependent effects on evening melatonin concentrations in healthy young people at rather low light levels.
KW - melanopsin
KW - melatonin
KW - non-visual effects of light
KW - pupil
KW - silent substitution
UR - http://www.scopus.com/inward/record.url?scp=85185692546&partnerID=8YFLogxK
U2 - 10.1177/07487304241226466
DO - 10.1177/07487304241226466
M3 - Article
AN - SCOPUS:85185692546
SN - 0748-7304
VL - 39
SP - 282
EP - 294
JO - Journal of Biological Rhythms
JF - Journal of Biological Rhythms
IS - 3
ER -