The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins

Bernat Blasco-Moreno, Leire de Campos-Mata, René Böttcher, José García-Martínez, Jennifer Jungfleisch, Danny D. Nedialkova, Shiladitya Chattopadhyay, María Eugenia Gas, Baldomero Oliva, José E. Pérez-Ortín, Sebastian A. Leidel, Mordechai Choder, Juana Díez

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

The highly conserved 5’–3’ exonuclease Xrn1 regulates gene expression in eukaryotes by coupling nuclear DNA transcription to cytosolic mRNA decay. By integrating transcriptome-wide analyses of translation with biochemical and functional studies, we demonstrate an unanticipated regulatory role of Xrn1 in protein synthesis. Xrn1 promotes translation of a specific group of transcripts encoding membrane proteins. Xrn1-dependence for translation is linked to poor structural RNA contexts for translation initiation, is mediated by interactions with components of the translation initiation machinery and correlates with an Xrn1-dependence for mRNA localization at the endoplasmic reticulum, the translation compartment of membrane proteins. Importantly, for this group of mRNAs, Xrn1 stimulates transcription, mRNA translation and decay. Our results uncover a crosstalk between the three major stages of gene expression coordinated by Xrn1 to maintain appropriate levels of membrane proteins.

Original languageEnglish
Article number1298
JournalNature Communications
Volume10
Issue number1
DOIs
StatePublished - 1 Dec 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins'. Together they form a unique fingerprint.

Cite this