TY - JOUR
T1 - The design and technology development of the JUNO central detector
AU - JUNO collaboration
AU - Abusleme, Angel
AU - Adam, Thomas
AU - Ahmad, Shakeel
AU - Ahmed, Rizwan
AU - Aiello, Sebastiano
AU - Akram, Muhammad
AU - Aleem, Abid
AU - Alexandros, Tsagkarakis
AU - An, Fengpeng
AU - An, Qi
AU - Andronico, Giuseppe
AU - Anfimov, Nikolay
AU - Antonelli, Vito
AU - Antoshkina, Tatiana
AU - Asavapibhop, Burin
AU - de André, João Pedro Athayde Marcondes
AU - Auguste, Didier
AU - Bai, Weidong
AU - Balashov, Nikita
AU - Baldini, Wander
AU - Barresi, Andrea
AU - Basilico, Davide
AU - Baussan, Eric
AU - Bellato, Marco
AU - Beretta, Marco
AU - Bergnoli, Antonio
AU - Bick, Daniel
AU - Birkenfeld, Thilo
AU - Blum, David
AU - Blyth, Simon
AU - Bolshakova, Anastasia
AU - Bongrand, Mathieu
AU - Bordereau, Clément
AU - Breton, Dominique
AU - Brigatti, Augusto
AU - Brugnera, Riccardo
AU - Bruno, Riccardo
AU - Budano, Antonio
AU - Busto, Jose
AU - Cabrera, Anatael
AU - Caccianiga, Barbara
AU - Cai, Hao
AU - Cai, Xiao
AU - Cai, Yanke
AU - Cai, Zhiyan
AU - Callier, Stéphane
AU - Cammi, Antonio
AU - Campeny, Agustin
AU - Cao, Chuanya
AU - Oberauer, Lothar
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/12
Y1 - 2024/12
N2 - The Jiangmen Underground Neutrino Observatory (JUNO) is a large-scale neutrino experiment with multiple physics goals including determining the neutrino mass hierarchy, the accurate measurement of neutrino oscillation parameters, the neutrino detection from supernovae, the Sun, and the Earth, etc. JUNO puts forward physically and technologically stringent requirements for its central detector (CD), including a large volume and target mass (20 kt liquid scintillator, LS), a high-energy resolution (3% at 1 MeV), a high light transmittance, the largest possible photomultiplier (PMT) coverage, the lowest possible radioactive background, etc. The CD design, using a spherical acrylic vessel with a diameter of 35.4 m to contain the LS and a stainless steel structure to support the acrylic vessel and PMTs, was chosen and optimized. The acrylic vessel and the stainless steel structure will be immersed in pure water to shield the radioactive background and bear great buoyancy. The challenging requirements of the acrylic sphere have been achieved, such as a low intrinsic radioactivity and high transmittance of the manufactured acrylic panels, the tensile and compressive acrylic node design with embedded stainless steel pad, and one-time polymerization for multiple bonding lines. Moreover, several technical challenges of the stainless steel structure have been solved: the production of low radioactivity stainless steel material, the deformation and precision control during production and assembly, and the usage of high-strength stainless steel rivet bolt and of high friction efficient linkage plate. Finally, the design of the ancillary equipment such as the LS filling, overflowing, and circulating system was done.
AB - The Jiangmen Underground Neutrino Observatory (JUNO) is a large-scale neutrino experiment with multiple physics goals including determining the neutrino mass hierarchy, the accurate measurement of neutrino oscillation parameters, the neutrino detection from supernovae, the Sun, and the Earth, etc. JUNO puts forward physically and technologically stringent requirements for its central detector (CD), including a large volume and target mass (20 kt liquid scintillator, LS), a high-energy resolution (3% at 1 MeV), a high light transmittance, the largest possible photomultiplier (PMT) coverage, the lowest possible radioactive background, etc. The CD design, using a spherical acrylic vessel with a diameter of 35.4 m to contain the LS and a stainless steel structure to support the acrylic vessel and PMTs, was chosen and optimized. The acrylic vessel and the stainless steel structure will be immersed in pure water to shield the radioactive background and bear great buoyancy. The challenging requirements of the acrylic sphere have been achieved, such as a low intrinsic radioactivity and high transmittance of the manufactured acrylic panels, the tensile and compressive acrylic node design with embedded stainless steel pad, and one-time polymerization for multiple bonding lines. Moreover, several technical challenges of the stainless steel structure have been solved: the production of low radioactivity stainless steel material, the deformation and precision control during production and assembly, and the usage of high-strength stainless steel rivet bolt and of high friction efficient linkage plate. Finally, the design of the ancillary equipment such as the LS filling, overflowing, and circulating system was done.
UR - http://www.scopus.com/inward/record.url?scp=85213367786&partnerID=8YFLogxK
U2 - 10.1140/epjp/s13360-024-05830-8
DO - 10.1140/epjp/s13360-024-05830-8
M3 - Article
AN - SCOPUS:85213367786
SN - 2190-5444
VL - 139
JO - European Physical Journal Plus
JF - European Physical Journal Plus
IS - 12
M1 - 1128
ER -