The Craft of Selective Prediction: Towards Reliable Case Outcome Classification - An Empirical Study on European Court of Human Rights Cases

T. Y.S.S. Santosh, Irtiza Chowdhury, Shanshan Xu, Matthias Grabmair

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In high-stakes decision-making tasks within legal NLP, such as Case Outcome Classification (COC), quantifying a model's predictive confidence is crucial. Confidence estimation enables humans to make more informed decisions, particularly when the model's certainty is low, or where the consequences of a mistake are significant. However, most existing COC works prioritize high task performance over model reliability. This paper conducts an empirical investigation into how various design choices-including pre-training corpus, confidence estimator and fine-tuning loss-affect the reliability of COC models within the framework of selective prediction. Our experiments on the multi-label COC task, focusing on European Court of Human Rights (ECtHR) cases, highlight the importance of a diverse yet domain-specific pre-training corpus for better calibration. Additionally, we demonstrate that larger models tend to exhibit overconfidence, Monte Carlo dropout methods produce reliable confidence estimates, and confident error regularization effectively mitigates overconfidence. To our knowledge, this is the first systematic exploration of selective prediction in legal NLP. Our findings underscore the need for further research on enhancing confidence measurement and improving the trustworthiness of models in the legal domain.

Original languageEnglish
Title of host publicationEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024
EditorsYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
PublisherAssociation for Computational Linguistics (ACL)
Pages3656-3674
Number of pages19
ISBN (Electronic)9798891761681
StatePublished - 2024
Event2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 - Hybrid, Miami, United States
Duration: 12 Nov 202416 Nov 2024

Publication series

NameEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024

Conference

Conference2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
Country/TerritoryUnited States
CityHybrid, Miami
Period12/11/2416/11/24

Fingerprint

Dive into the research topics of 'The Craft of Selective Prediction: Towards Reliable Case Outcome Classification - An Empirical Study on European Court of Human Rights Cases'. Together they form a unique fingerprint.

Cite this