TY - JOUR
T1 - The "Calamine" of southwest Sardinia
T2 - Geology, mineralogy, and stable isotope geochemistry of supergene Zn mineralization
AU - Boni, Maria
AU - Gilg, H. Albert
AU - Aversa, Gaspare
AU - Balassone, Giuseppina
PY - 2003/6
Y1 - 2003/6
N2 - The mining district of southwest Sardinia, Italy is one of the classic areas where primary carbonate-hosted Zn-Pb sulfide ores are associated with a relatively thick secondary oxidation zone containing Zn (hydroxy-)carbonates and silicates, the so-called "calamine," exploited until the 1970s. The extent of the capping oxidized ore zones, reaching deep below the surface, is generally independent of the present-day water table. The base of the oxidation profile containing nonsulfide Zn minerals in various uplifted blocks in the Iglesiente area can be both elevated above or submerged below the recent water table. The genesis of the ores is therefore considered to be related to fossil, locally reactivated, oxidation phenomena. The mineralogy of the nonsulfide mineralization is generally complex and consists of smithsonite, hydrozincite, and hemimorphite as the main economic minerals, accompanied by iron and manganese oxy-hydroxides and residual clays. This study places the secondary ores in the context of the tectonostratigraphic and climatic evolution of Sardinia and includes a petrographic and mineralogic study of the most abundant minerals, relating the mineralogy of secondary Zn and Pb carbonates to their stable C and O isotope geochemistry and constraining the origin of the oxidizing fluids and the temperature of mineralization. The δ 18O VSMOW values of smithsonite are homogeneous, regardless of crystal morphology, position, and mine location (avg. 27.4 ± 0.9‰). This homogeneity points to a relatively uniform isotopic composition of the oxidation fluid and corresponding formation temperatures of 20° to 35°C. Considering the karstic environment of smithsonite formation in southwest Sardinia, this high temperature could be due to heat release during sulfide oxidation. The carbon isotope compositions of secondary Zn carbonates display considerable variations of more than 9 per mil (δ 13C VPDB from -0.6 to -10.4‰). This large range indicates participation of variable amounts of reduced organic and marine carbonate carbon during sulfide oxidation. The isotopic variation can be related to a variation in crystal morphologies of smithsonite, reflecting different environments of formation with respect to water table oscillations in karstic environments (upper to lower vadose to epiphreatic). The same range in δ 13C isotope values is displayed by the calcite associated with Zn carbonates and by recent speleothems. The most reliable time span for the deposition of bulk calamine ore in southwest Sardinia ranges from middle Eocene to Plio-Pleistocene, although further multiple reactivation of the weathering profiles, peaking within the warm interglacial periods of the Quaternary, cannot be excluded.
AB - The mining district of southwest Sardinia, Italy is one of the classic areas where primary carbonate-hosted Zn-Pb sulfide ores are associated with a relatively thick secondary oxidation zone containing Zn (hydroxy-)carbonates and silicates, the so-called "calamine," exploited until the 1970s. The extent of the capping oxidized ore zones, reaching deep below the surface, is generally independent of the present-day water table. The base of the oxidation profile containing nonsulfide Zn minerals in various uplifted blocks in the Iglesiente area can be both elevated above or submerged below the recent water table. The genesis of the ores is therefore considered to be related to fossil, locally reactivated, oxidation phenomena. The mineralogy of the nonsulfide mineralization is generally complex and consists of smithsonite, hydrozincite, and hemimorphite as the main economic minerals, accompanied by iron and manganese oxy-hydroxides and residual clays. This study places the secondary ores in the context of the tectonostratigraphic and climatic evolution of Sardinia and includes a petrographic and mineralogic study of the most abundant minerals, relating the mineralogy of secondary Zn and Pb carbonates to their stable C and O isotope geochemistry and constraining the origin of the oxidizing fluids and the temperature of mineralization. The δ 18O VSMOW values of smithsonite are homogeneous, regardless of crystal morphology, position, and mine location (avg. 27.4 ± 0.9‰). This homogeneity points to a relatively uniform isotopic composition of the oxidation fluid and corresponding formation temperatures of 20° to 35°C. Considering the karstic environment of smithsonite formation in southwest Sardinia, this high temperature could be due to heat release during sulfide oxidation. The carbon isotope compositions of secondary Zn carbonates display considerable variations of more than 9 per mil (δ 13C VPDB from -0.6 to -10.4‰). This large range indicates participation of variable amounts of reduced organic and marine carbonate carbon during sulfide oxidation. The isotopic variation can be related to a variation in crystal morphologies of smithsonite, reflecting different environments of formation with respect to water table oscillations in karstic environments (upper to lower vadose to epiphreatic). The same range in δ 13C isotope values is displayed by the calcite associated with Zn carbonates and by recent speleothems. The most reliable time span for the deposition of bulk calamine ore in southwest Sardinia ranges from middle Eocene to Plio-Pleistocene, although further multiple reactivation of the weathering profiles, peaking within the warm interglacial periods of the Quaternary, cannot be excluded.
UR - http://www.scopus.com/inward/record.url?scp=0141786896&partnerID=8YFLogxK
U2 - 10.2113/gsecongeo.98.4.731
DO - 10.2113/gsecongeo.98.4.731
M3 - Article
AN - SCOPUS:0141786896
SN - 0361-0128
VL - 98
SP - 731
EP - 748
JO - Economic Geology
JF - Economic Geology
IS - 4
ER -