TGIF: Topological gap in-fill for vascular networks: A generative physiological modeling approach

Matthias Schneider, Sven Hirsch, Bruno Weber, Gábor Székely, Bjoern H. Menze

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

This paper describes a new approach for the reconstruction of complete 3-D arterial trees from partially incomplete image data. We utilize a physiologically motivated simulation framework to iteratively generate artificial, yet physiologically meaningful, vasculatures for the correction of vascular connectivity. The generative approach is guided by a simplified angiogenesis model, while at the same time topological and morphological evidence extracted from the image data is considered to form functionally adequate tree models. We evaluate the effectiveness of our method on four synthetic datasets using different metrics to assess topological and functional differences. Our experiments show that the proposed generative approach is superior to state-of-the-art approaches that only consider topology for vessel reconstruction and performs consistently well across different problem sizes and topologies.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer-Assisted Intervention, MICCAI 2014 - 17th International Conference, Proceedings
PublisherSpringer Verlag
Pages89-96
Number of pages8
EditionPART 2
ISBN (Print)9783319104690
DOIs
StatePublished - 2014
Event17th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014 - Boston, MA, United States
Duration: 14 Sep 201418 Sep 2014

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 2
Volume8674 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference17th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014
Country/TerritoryUnited States
CityBoston, MA
Period14/09/1418/09/14

Keywords

  • angiogenesis
  • vascular connectivity
  • vascular reconstruction

Fingerprint

Dive into the research topics of 'TGIF: Topological gap in-fill for vascular networks: A generative physiological modeling approach'. Together they form a unique fingerprint.

Cite this