Testing the AGN Radio and Neutrino correlation using the MOJAVE catalog and 10 years of IceCube Data

Icecube Collaboration

Research output: Contribution to journalConference articlepeer-review

Abstract

On 22 September 2017, IceCube reported a high-energy neutrino event which was found to be coincident with a flaring blazar, TXS 0506+056. This multi-messenger observation hinted at blazars contributing to the observed high-energy astrophysical neutrinos and raised a need for extensive correlation studies. Recent work shows that the internal absorption of gamma rays, and their interactions intrinsic to the source and with the extragalactic background, will cause a lack of energetic gamma-ray and neutrino correlation while hinting towards a correlation between neutrinos and lower photon energy observations in the X-ray and radio bands. Studies based on published IceCube alerts and radio observations report a possible radio-neutrino correlation in both gamma-ray bright and gamma-ray dim active galactic nuclei (AGN). However, they have marginal statistical significance due to limited available data. We present a correlation analysis between 15 GHz radio observations of AGN reported in the MOJAVE XV catalog and 10 years of IceCube detector data and discuss the results derived from a time-averaged stacking analysis.

Original languageEnglish
Article number949
JournalProceedings of Science
Volume395
StatePublished - 18 Mar 2022
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: 12 Jul 202123 Jul 2021

Fingerprint

Dive into the research topics of 'Testing the AGN Radio and Neutrino correlation using the MOJAVE catalog and 10 years of IceCube Data'. Together they form a unique fingerprint.

Cite this