TY - JOUR
T1 - Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm
AU - Brauner, Pedro C.
AU - Schipprack, Wolfgang
AU - Utz, H. Friedrich
AU - Bauer, Eva
AU - Mayer, Manfred
AU - Schön, Chris Carolin
AU - Melchinger, Albrecht E.
N1 - Publisher Copyright:
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2019/6/1
Y1 - 2019/6/1
N2 - Key message: Selected doubled haploid lines averaged similar testcross performance as their original landraces, and the best of them approached the yields of elite inbreds, demonstrating their potential to broaden the narrow genetic diversity of the flint germplasm pool. Abstract: Maize landraces represent a rich source of genetic diversity that remains largely idle because the high genetic load and performance gap to elite germplasm hamper their use in modern breeding programs. Production of doubled haploid (DH) lines can mitigate problems associated with the use of landraces in pre-breeding. Our objective was to assess in comparison with modern materials the testcross performance (TP) of the best 89 out of 389 DH lines developed from six landraces and evaluated in previous studies for line per se performance (LP). TP with a dent tester was evaluated for the six original landraces, ~ 15 DH lines from each landrace selected for LP, and six elite flint inbreds together with nine commercial hybrids for grain and silage traits. Mean TP of the DH lines rarely differed significantly from TP of their corresponding landrace, which averaged in comparison with the mean TP of the elite flint inbreds ~ 20% lower grain yield and ~ 10% lower dry matter and methane yield. Trait correlations of DH lines closely agreed with the literature; correlation of TP with LP was zero for grain yield, underpinning the need to evaluate TP in addition to LP. For all traits, we observed substantial variation for TP among the DH lines and the best showed similar TP yields as the elite inbreds. Our results demonstrate the high potential of landraces for broadening the narrow genetic base of the flint heterotic pool and the usefulness of the DH technology for exploiting idle genetic resources from gene banks.
AB - Key message: Selected doubled haploid lines averaged similar testcross performance as their original landraces, and the best of them approached the yields of elite inbreds, demonstrating their potential to broaden the narrow genetic diversity of the flint germplasm pool. Abstract: Maize landraces represent a rich source of genetic diversity that remains largely idle because the high genetic load and performance gap to elite germplasm hamper their use in modern breeding programs. Production of doubled haploid (DH) lines can mitigate problems associated with the use of landraces in pre-breeding. Our objective was to assess in comparison with modern materials the testcross performance (TP) of the best 89 out of 389 DH lines developed from six landraces and evaluated in previous studies for line per se performance (LP). TP with a dent tester was evaluated for the six original landraces, ~ 15 DH lines from each landrace selected for LP, and six elite flint inbreds together with nine commercial hybrids for grain and silage traits. Mean TP of the DH lines rarely differed significantly from TP of their corresponding landrace, which averaged in comparison with the mean TP of the elite flint inbreds ~ 20% lower grain yield and ~ 10% lower dry matter and methane yield. Trait correlations of DH lines closely agreed with the literature; correlation of TP with LP was zero for grain yield, underpinning the need to evaluate TP in addition to LP. For all traits, we observed substantial variation for TP among the DH lines and the best showed similar TP yields as the elite inbreds. Our results demonstrate the high potential of landraces for broadening the narrow genetic base of the flint heterotic pool and the usefulness of the DH technology for exploiting idle genetic resources from gene banks.
UR - http://www.scopus.com/inward/record.url?scp=85061653772&partnerID=8YFLogxK
U2 - 10.1007/s00122-019-03325-0
DO - 10.1007/s00122-019-03325-0
M3 - Article
C2 - 30877313
AN - SCOPUS:85061653772
SN - 0040-5752
VL - 132
SP - 1897
EP - 1908
JO - Theoretical and Applied Genetics
JF - Theoretical and Applied Genetics
IS - 6
ER -