TY - GEN
T1 - Teleoperation for on-orbit servicing missions through the ASTRA geostationary satellite
AU - Artigas, Jordi
AU - Balachandran, Ribin
AU - De Stefano, Marco
AU - Panzirsch, Michael
AU - Lampariello, Roberto
AU - Albu-Schaeffer, Alin
AU - Harder, Jan
AU - Letschnik, Juergen
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/6/27
Y1 - 2016/6/27
N2 - Force-feedback teleoperation for on-orbit servicing tasks demands real-time communication requirements, latencies below one second and the presence of a skilled human operator to perform the on-orbit servicing tasks in real-time from an on-ground station. On the other hand, teleoperation is a technology that enjoys high TRLs, has evidenced benefits in other domains as nuclear or medical and has little dependency on optical sensors and image processing algorithms that need to operate in extreme illumination conditions. While all of these factors could be of high value in future on-orbit servicing missions, the following questions remain still to be answered: 1) How is the free floating dynamics and time delay affecting the control structure of the system? 2) Can current space communication infrastructures support real time control requirements established by the bilateral controller (i.e. force-feedback teleoperation)? 3) Can a skilled human operator perform on-orbit servicing tasks through the teleoperation system, probably affected by high latencies and force-feedback distortions? This paper presents initial answers to these questions based on results from a force-feedback teleoperation system that has been implemented using the ASTRA geostationary satellite and the DLR on-orbit servicing facility (OOS-SIM).
AB - Force-feedback teleoperation for on-orbit servicing tasks demands real-time communication requirements, latencies below one second and the presence of a skilled human operator to perform the on-orbit servicing tasks in real-time from an on-ground station. On the other hand, teleoperation is a technology that enjoys high TRLs, has evidenced benefits in other domains as nuclear or medical and has little dependency on optical sensors and image processing algorithms that need to operate in extreme illumination conditions. While all of these factors could be of high value in future on-orbit servicing missions, the following questions remain still to be answered: 1) How is the free floating dynamics and time delay affecting the control structure of the system? 2) Can current space communication infrastructures support real time control requirements established by the bilateral controller (i.e. force-feedback teleoperation)? 3) Can a skilled human operator perform on-orbit servicing tasks through the teleoperation system, probably affected by high latencies and force-feedback distortions? This paper presents initial answers to these questions based on results from a force-feedback teleoperation system that has been implemented using the ASTRA geostationary satellite and the DLR on-orbit servicing facility (OOS-SIM).
UR - http://www.scopus.com/inward/record.url?scp=84978471878&partnerID=8YFLogxK
U2 - 10.1109/AERO.2016.7500785
DO - 10.1109/AERO.2016.7500785
M3 - Conference contribution
AN - SCOPUS:84978471878
T3 - IEEE Aerospace Conference Proceedings
BT - 2016 IEEE Aerospace Conference, AERO 2016
PB - IEEE Computer Society
T2 - 2016 IEEE Aerospace Conference, AERO 2016
Y2 - 5 March 2016 through 12 March 2016
ER -