## Abstract

The H0LiCOW collaboration inferred via strong gravitational lensing time delays a Hubble constant value of H0 = 73.3-1.8+1.7 km s-1 Mpc-1, describing deflector mass density profiles by either a power-law or stars (constant mass-to-light ratio) plus standard dark matter halos. The mass-sheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in H0. We quantify any potential effect of the MST with a flexible family of mass models, which directly encodes it, and they are hence maximally degenerate with H0. Our calculation is based on a new hierarchical Bayesian approach in which the MST is only constrained by stellar kinematics. The approach is validated on mock lenses, which are generated from hydrodynamic simulations. We first applied the inference to the TDCOSMO sample of seven lenses, six of which are from H0LiCOW, and measured H0 = 74.5-6.1+5.6 km s-1 Mpc-1. Secondly, in order to further constrain the deflector mass density profiles, we added imaging and spectroscopy for a set of 33 strong gravitational lenses from the Sloan Lens ACS (SLACS) sample. For nine of the 33 SLAC lenses, we used resolved kinematics to constrain the stellar anisotropy. From the joint hierarchical analysis of the TDCOSMO+SLACS sample, we measured H0 = 67.4-3.2+4.1 km s-1 Mpc-1. This measurement assumes that the TDCOSMO and SLACS galaxies are drawn from the same parent population. The blind H0LiCOW, TDCOSMO-only and TDCOSMO+SLACS analyses are in mutual statistical agreement. The TDCOSMO+SLACS analysis prefers marginally shallower mass profiles than H0LiCOW or TDCOSMO-only. Without relying on the form of the mass density profile used by H0LiCOW, we achieve a ∼5% measurement of H0. While our new hierarchical analysis does not statistically invalidate the mass profile assumptions by H0LiCOW - and thus the H0 measurement relying on them - it demonstrates the importance of understanding the mass density profile of elliptical galaxies. The uncertainties on H0 derived in this paper can be reduced by physical or observational priors on the form of the mass profile, or by additional data.

Original language | English |
---|---|

Article number | A165 |

Journal | Astronomy and Astrophysics |

Volume | 643 |

DOIs | |

State | Published - 1 Nov 2020 |

## Keywords

- Cosmological parameters
- Cosmology: observations
- Distance scale
- Galaxies: general
- Galaxies: kinematics and dynamics
- Gravitational lensing: strong