TakeLab at SemEval-2019 task 4: Hyperpartisan news detection

borat-sagdiyev team

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

In this paper, we demonstrate the system built to solve the SemEval-2019 task 4: Hyperpartisan News Detection (Kiesel et al., 2019), the task of automatically determining whether an article is heavily biased towards one side of the political spectrum. Our system receives an article in its raw, textual form, analyzes it, and predicts with moderate accuracy whether the article is hyperpartisan. The learning model used was primarily trained on a manually prelabeled dataset containing news articles. The system relies on the previously constructed SVM model, available in the Python Scikit-Learn library. We ranked 6th in the competition of 42 teams with an accuracy of 79.1% (the winning team had 82.2%).

Original languageEnglish
Title of host publicationNAACL HLT 2019 - International Workshop on Semantic Evaluation, SemEval 2019, Proceedings of the 13th Workshop
PublisherAssociation for Computational Linguistics (ACL)
Pages995-998
Number of pages4
ISBN (Electronic)9781950737062
StatePublished - 2019
Externally publishedYes
Event13th International Workshop on Semantic Evaluation, SemEval 2019, co-located with the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2019 - Minneapolis, United States
Duration: 6 Jun 20197 Jun 2019

Publication series

NameNAACL HLT 2019 - International Workshop on Semantic Evaluation, SemEval 2019, Proceedings of the 13th Workshop

Conference

Conference13th International Workshop on Semantic Evaluation, SemEval 2019, co-located with the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2019
Country/TerritoryUnited States
CityMinneapolis
Period6/06/197/06/19

Fingerprint

Dive into the research topics of 'TakeLab at SemEval-2019 task 4: Hyperpartisan news detection'. Together they form a unique fingerprint.

Cite this