Systematic Development of a Simultaneous Determination of Plastic Particle Identity and Adsorbed Organic Compounds by Thermodesorption-Pyrolysis GC/MS (TD-Pyr-GC/MS)

Julia Reichel, Johanna Graßmann, Thomas Letzel, Jörg E. Drewes

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Micro-, submicro- and nanoplastic particles are increasingly regarded as vectors for trace organic chemicals. In order to determine adsorbed trace organic chemicals on polymers, it has usually been necessary to carry out complex extraction steps. With the help of a newly designed thermal desorption pyrolysis gas chromatography mass spectrometry (TD-Pyr-GC/MS) method, it is possible to identify adsorbed trace organic chemicals on micro-, submicro- and nanoparticles as well as the particle short chain polymers in one analytical setup without any transfers. This ensures a high sample throughput for the qualitative analysis of trace substances and polymer type. Since the measuring time per sample is only 2 h, a high sample throughput is possible. It is one of the few analytical methods which can be used also for the investigation of nanoplastic particles. Initially adsorbed substances are desorbed from the particle by thermal desorption (TD); subsequently, the polymer is fragmented by pyrolysis (PYR). Both particle treatment techniques are directly coupled with the same GC-MS system analyzing desorbed molecules and pyrolysis products, respectively. In this study, we developed a systematic and optimized method for this application. For method development, the trace organic chemicals phenanthrene, α-cypermethrin and triclosan were tested on reference polymers polystyrene (PS), polymethyl methacrylate (PMMA) and polyethylene (PE). Well-defined particle fractions were used, including polystyrene (sub)micro- (41 and 40 µm) and nanoparticles (78 nm) as well as 48-µm sized PE and PMMA particles, respectively. The sorption of phenanthrene (PMMA << PS 40 µm < 41 µm < PE < PS 78 nm) and α-cypermethrin (PS 41 µm < PS 40 µm < PE < PMMA < PS 78 nm) to the particles was strongly polymer-dependent. Triclosan adsorbed only on PE and on the nanoparticles of PS (PE < PS78).

Original languageEnglish
JournalMolecules
Volume25
Issue number21
DOIs
StatePublished - 28 Oct 2020

Keywords

  • desorption
  • microplastic
  • nanoplastic
  • pyrolysis
  • thermodesorption

Fingerprint

Dive into the research topics of 'Systematic Development of a Simultaneous Determination of Plastic Particle Identity and Adsorbed Organic Compounds by Thermodesorption-Pyrolysis GC/MS (TD-Pyr-GC/MS)'. Together they form a unique fingerprint.

Cite this