Surgical tool tracking and pose estimation in retinal microsurgery

Nicola Rieke, David Joseph Tan, Mohamed Alsheakhali, Federico Tombari, Chiara Amat di San Filippo, Vasileios Belagiannis, Abouzar Eslami, Nassir Navab

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

39 Scopus citations

Abstract

Retinal Microsurgery (RM) is performed with small surgical tools which are observed through a microscope. Real-time estimation of the tool’s pose enables the application of various computer-assisted techniques such as augmented reality, with the potential of improving the clinical outcome. However, most existing methods are prone to fail in in-vivo sequences due to partial occlusions, illumination and appearance changes of the tool. To overcome these problems, we propose an algorithm for simultaneous tool tracking and pose estimation that is inspired by state-of-the-art computer vision techniques. Specifically, we introduce a method based on regression forests to track the tool tip and to recover the tool’s articulated pose. To demonstrate the performance of our algorithm, we evaluate on a dataset which comprises four real surgery sequences, and compare with the state-of-the-art methods on a publicly available dataset.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
PublisherSpringer Verlag
Pages266-273
Number of pages8
DOIs
StatePublished - 2015

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9349
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Fingerprint

Dive into the research topics of 'Surgical tool tracking and pose estimation in retinal microsurgery'. Together they form a unique fingerprint.

Cite this