Suppressing catalyst poisoning in the carbodiimide-fueled reaction cycle

Xiaoyao Chen, Héctor Soria-Carrera, Oleksii Zozulia, Job Boekhoven

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

In biology, cells regulate the function of molecules using catalytic reaction cycles that convert reagents with high chemical potential (fuel) to waste molecules. Inspired by biology, synthetic analogs of such chemical reaction cycles have been devised, and a widely used catalytic reaction cycle uses carboxylates as catalysts to accelerate the hydration of carbodiimides. The cycle is versatile and easy to use, so it is widely applied to regulate motors, pumps, self-assembly, and phase separation. However, the cycle suffers from side reactions, especially the formation of N-acylurea. In catalytic reaction cycles, side reactions are disastrous as they decrease the fuel's efficiency and, more importantly, destroy the molecular machinery or assembling molecules. Therefore, this work tested how to suppress N-acylurea by screening precursor concentration, its structure, carbodiimide structure, additives, temperature, and pH. It turned out that the combination of low temperature, low pH, and 10% pyridine as a fraction of the fuel could significantly suppress the N-acylurea side product and keep the reaction cycle highly effective to regulate successful assembly. We anticipate that our work will provide guidelines for using carbodiimide-fueled reaction cycles to regulate molecular function and how to choose optimal conditions.

Original languageEnglish
Pages (from-to)12653-12660
Number of pages8
JournalChemical Science
Volume14
Issue number44
DOIs
StatePublished - 17 Oct 2023

Fingerprint

Dive into the research topics of 'Suppressing catalyst poisoning in the carbodiimide-fueled reaction cycle'. Together they form a unique fingerprint.

Cite this