TY - JOUR
T1 - Support vector machines with the hard-margin loss
T2 - optimal training via combinatorial Benders’ cuts
AU - Santana, Ítalo
AU - Serrano, Breno
AU - Schiffer, Maximilian
AU - Vidal, Thibaut
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
PY - 2025
Y1 - 2025
N2 - The classical hinge-loss support vector machines (SVMs) model is sensitive to outlier observations due to the unboundedness of its loss function. To circumvent this issue, recent studies have focused on non-convex loss functions, such as the hard-margin loss, which associates a constant penalty to any misclassified or within-margin sample. Applying this loss function yields much-needed robustness for critical applications, but it also leads to an NP-hard model that makes training difficult: current exact optimization algorithms show limited scalability, whereas heuristics are not able to find high-quality solutions consistently. Against this background, we propose new integer programming strategies that significantly improve our ability to train the hard-margin SVM model to global optimality. We introduce an iterative sampling and decomposition approach, in which smaller subproblems are used to separate combinatorial Benders’ cuts. Those cuts, used within a branch-and-cut algorithm, permit our solution framework to converge much more quickly toward a global optimum. Through extensive numerical analyses on classical benchmark data sets, our solution algorithm solves, for the first time, 117 new data sets out of 873 to optimality and achieves a reduction of 50% in the average optimality gap for the hardest datasets of the benchmark.
AB - The classical hinge-loss support vector machines (SVMs) model is sensitive to outlier observations due to the unboundedness of its loss function. To circumvent this issue, recent studies have focused on non-convex loss functions, such as the hard-margin loss, which associates a constant penalty to any misclassified or within-margin sample. Applying this loss function yields much-needed robustness for critical applications, but it also leads to an NP-hard model that makes training difficult: current exact optimization algorithms show limited scalability, whereas heuristics are not able to find high-quality solutions consistently. Against this background, we propose new integer programming strategies that significantly improve our ability to train the hard-margin SVM model to global optimality. We introduce an iterative sampling and decomposition approach, in which smaller subproblems are used to separate combinatorial Benders’ cuts. Those cuts, used within a branch-and-cut algorithm, permit our solution framework to converge much more quickly toward a global optimum. Through extensive numerical analyses on classical benchmark data sets, our solution algorithm solves, for the first time, 117 new data sets out of 873 to optimality and achieves a reduction of 50% in the average optimality gap for the hardest datasets of the benchmark.
KW - Combinatorial Benders’ cuts
KW - Combinatorial optimization
KW - Hard margin loss
KW - Sampling strategies
KW - Support vector machines
UR - http://www.scopus.com/inward/record.url?scp=105001653299&partnerID=8YFLogxK
U2 - 10.1007/s10898-025-01483-8
DO - 10.1007/s10898-025-01483-8
M3 - Article
AN - SCOPUS:105001653299
SN - 0925-5001
JO - Journal of Global Optimization
JF - Journal of Global Optimization
M1 - 115017
ER -