Superheating and supercooling of Ge nanocrystals embedded in SiO 2

Q. Xu, I. D. Sharp, C. W. Yuan, D. O. Yi, C. Y. Liao, A. M. Glaeser, A. M. Minor, J. W. Beeman, M. C. Ridgway, P. Kluth, J. W.Ager III, D. C. Chrzan, E. E. Haller

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Free-standing nanocrystals exhibit a size-dependant thermodynamic melting point reduction relative to the bulk melting point that is governed by the surface free energy. The presence of an encapsulating matrix, however, alters the interface free energy of nanocrystals and their thermodynamic melting point can either increase or decrease relative to bulk. Furthermore, kinetic contributions can significantly alter the melting behaviours of embedded nanoscale materials. To study the effect of an encapsulating matrix on the melting behaviour of nanocrystals, we performed in situ electron diffraction measurements on Ge nanocrystals embedded in a silicon dioxide matrix. Ge nanocrystals were formed by multi-energy ion implantation into a 500 nm thick silica thin film on a silicon substrate followed by thermal annealing at 900 °C for 1 h. We present results demonstrating that Ge nanocrystals embedded in SiO2 exhibit a 470 K melting/solidification hysteresis that is approximately symmetric about the bulk melting point. This unique behaviour, which is thought to be impossible for bulk materials, is well described using a classical thermodynamic model that predicts both kinetic supercooling and kinetic superheating. The presence of the silica matrix suppresses surface pre-melting of nanocrystals. Therefore, heterogeneous nucleation of both the liquid phase and the solid phase are required during the heating and cooling cycle. The magnitude of melting hysteresis is governed primarily by the value of the liquid Ge/solid Ge interface free energy, whereas the relative values of the solid Ge/matrix and liquid Ge/matrix interface free energies govern the position of the hysteresis loop in absolute temperature.

Original languageEnglish
Article number206
Pages (from-to)1042-1046
Number of pages5
JournalJournal of Physics: Conference Series
Volume61
Issue number1
DOIs
StatePublished - 1 Apr 2007
Externally publishedYes

Fingerprint

Dive into the research topics of 'Superheating and supercooling of Ge nanocrystals embedded in SiO 2'. Together they form a unique fingerprint.

Cite this