TY - JOUR
T1 - Supercorrelated Radiance in Nonlinear Photonic Waveguides
AU - Wang, Zhihai
AU - Jaako, Tuomas
AU - Kirton, Peter
AU - Rabl, Peter
N1 - Publisher Copyright:
© 2020 American Physical Society..
PY - 2020/5/29
Y1 - 2020/5/29
N2 - We study the collective decay of two-level emitters coupled to a nonlinear waveguide, for example, a nanophotonic lattice or a superconducting resonator array with strong photon-photon interactions. Under these conditions, a new decay channel into bound photon pairs emerges, through which spatial correlations between emitters are established by regular interference as well as interactions between the photons. We derive an effective Markovian theory to model the resulting decay dynamics of an arbitrary distribution of emitters and identify collective effects beyond the usual phenomena of super- and subradiance. Specifically, in the limit of many close-by emitters, we find that the system undergoes a supercorrelated decay process where all the emitters are either in the excited state or in the ground state but not in any of the intermediate states. The predicted effects can be probed in state-of-the-art waveguide QED experiments and provide a striking example of how the dynamics of open quantum systems can be modified by many-body effects in a nonharmonic environment.
AB - We study the collective decay of two-level emitters coupled to a nonlinear waveguide, for example, a nanophotonic lattice or a superconducting resonator array with strong photon-photon interactions. Under these conditions, a new decay channel into bound photon pairs emerges, through which spatial correlations between emitters are established by regular interference as well as interactions between the photons. We derive an effective Markovian theory to model the resulting decay dynamics of an arbitrary distribution of emitters and identify collective effects beyond the usual phenomena of super- and subradiance. Specifically, in the limit of many close-by emitters, we find that the system undergoes a supercorrelated decay process where all the emitters are either in the excited state or in the ground state but not in any of the intermediate states. The predicted effects can be probed in state-of-the-art waveguide QED experiments and provide a striking example of how the dynamics of open quantum systems can be modified by many-body effects in a nonharmonic environment.
UR - http://www.scopus.com/inward/record.url?scp=85086005297&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.124.213601
DO - 10.1103/PhysRevLett.124.213601
M3 - Article
C2 - 32530664
AN - SCOPUS:85086005297
SN - 0031-9007
VL - 124
JO - Physical Review Letters
JF - Physical Review Letters
IS - 21
M1 - 213601
ER -