TY - JOUR
T1 - [18f]fet pet uptake indicates high tumor and low necrosis content in brain metastasis
AU - Meyer, Hanno S.
AU - Liesche-Starnecker, Friederike
AU - Mustafa, Mona
AU - Yakushev, Igor
AU - Wiestler, Benedikt
AU - Meyer, Bernhard
AU - Gempt, Jens
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/1/2
Y1 - 2021/1/2
N2 - Amino acid positron emission tomography (PET) has been employed in the management of brain metastases. Yet, histopathological correlates of PET findings remain poorly understood. We investigated the relationship of O-(2-[18F]Fluoroethyl)-L-tyrosine ([18F]FET) PET, magnetic resonance imaging (MRI), and histology in brain metastases. Fifteen patients undergoing brain metastasis resection were included prospectively. Using intraoperative navigation, 39 targeted biopsies were obtained from parts of the metastases that were either PET-positive or negative and MRI-positive or negative. Tumor and necrosis content, proliferation index, lymphocyte infiltration, and vasculariza-tion were determined histopathologically. [18F]FET PET had higher specificity than MRI (66% vs. 56%) and increased sensitivity for tumor from 73% to 93% when combined with MRI. Tumor content per sample increased with PET uptake (rs = 0.3, p = 0.045), whereas necrosis content decreased (rs = −0.4, p = 0.014). PET-positive samples had more tumor (median: 75%; interquartile range: 10–97%; p = 0.016) than PET-negative samples. The other investigated histological properties were not correlated with [18F]FET PET intensity. Tumors were heterogeneous at the levels of imaging and histology. [18F]FET PET can be a valuable tool in the management of brain metastases. In biopsies, one should aim for PET hotspots to increase the chance for retrieval of samples with high tumor cell concentrations. Multiple biopsies should be performed to account for intra-tumor heterogeneity. PET could be useful for differentiating treatment-related changes (e.g., radiation necrosis) from tumor recurrence.
AB - Amino acid positron emission tomography (PET) has been employed in the management of brain metastases. Yet, histopathological correlates of PET findings remain poorly understood. We investigated the relationship of O-(2-[18F]Fluoroethyl)-L-tyrosine ([18F]FET) PET, magnetic resonance imaging (MRI), and histology in brain metastases. Fifteen patients undergoing brain metastasis resection were included prospectively. Using intraoperative navigation, 39 targeted biopsies were obtained from parts of the metastases that were either PET-positive or negative and MRI-positive or negative. Tumor and necrosis content, proliferation index, lymphocyte infiltration, and vasculariza-tion were determined histopathologically. [18F]FET PET had higher specificity than MRI (66% vs. 56%) and increased sensitivity for tumor from 73% to 93% when combined with MRI. Tumor content per sample increased with PET uptake (rs = 0.3, p = 0.045), whereas necrosis content decreased (rs = −0.4, p = 0.014). PET-positive samples had more tumor (median: 75%; interquartile range: 10–97%; p = 0.016) than PET-negative samples. The other investigated histological properties were not correlated with [18F]FET PET intensity. Tumors were heterogeneous at the levels of imaging and histology. [18F]FET PET can be a valuable tool in the management of brain metastases. In biopsies, one should aim for PET hotspots to increase the chance for retrieval of samples with high tumor cell concentrations. Multiple biopsies should be performed to account for intra-tumor heterogeneity. PET could be useful for differentiating treatment-related changes (e.g., radiation necrosis) from tumor recurrence.
KW - Amino acid positron-emission tomography
KW - Brain metastasis
KW - Pseudoprogression
KW - Radiation necrosis
KW - Targeted biopsy
KW - Tumor heterogeneity
UR - http://www.scopus.com/inward/record.url?scp=85100138582&partnerID=8YFLogxK
U2 - 10.3390/cancers13020355
DO - 10.3390/cancers13020355
M3 - Article
AN - SCOPUS:85100138582
SN - 2072-6694
VL - 13
SP - 1
EP - 12
JO - Cancers
JF - Cancers
IS - 2
M1 - 355
ER -