Sum-Rate Capacity for Symmetric Gaussian Multiple Access Channels with Feedback

Erixhen Sula, Michael Gastpar, Gerhard Kramer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The feedback sum-rate capacity is established for the symmetric three-user Gaussian multiple-access channel (GMAC). The main contribution is a converse bound that combines the dependence-balance argument of Hekstra and Willems (1989) with a variant of the 'doubling trick' of Geng and Nair (2014). The converse bound matches the achievable sum-rate of the Fourier-Modulated Estimate Correction strategy of Kramer (2002). The proof arguments extend to GMACs with more than three users.

Original languageEnglish
Title of host publication2018 IEEE International Symposium on Information Theory, ISIT 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages306-310
Number of pages5
ISBN (Print)9781538647806
DOIs
StatePublished - 15 Aug 2018
Event2018 IEEE International Symposium on Information Theory, ISIT 2018 - Vail, United States
Duration: 17 Jun 201822 Jun 2018

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2018-June
ISSN (Print)2157-8095

Conference

Conference2018 IEEE International Symposium on Information Theory, ISIT 2018
Country/TerritoryUnited States
CityVail
Period17/06/1822/06/18

Fingerprint

Dive into the research topics of 'Sum-Rate Capacity for Symmetric Gaussian Multiple Access Channels with Feedback'. Together they form a unique fingerprint.

Cite this