Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers

Yufei Zhong, Martina Causa’, Gareth John Moore, Philipp Krauspe, Bo Xiao, Florian Günther, Jonas Kublitski, Rishi Shivhare, Johannes Benduhn, Eyal BarOr, Subhrangsu Mukherjee, Kaila M. Yallum, Julien Réhault, Stefan C.B. Mannsfeld, Dieter Neher, Lee J. Richter, Dean M. DeLongchamp, Frank Ortmann, Koen Vandewal, Erjun ZhouNatalie Banerji

Research output: Contribution to journalArticlepeer-review

134 Scopus citations

Abstract

Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.

Original languageEnglish
Article number833
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - 1 Dec 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers'. Together they form a unique fingerprint.

Cite this