StyleMesh: Style Transfer for Indoor 3D Scene Reconstructions

Lukas Hollein, Justin Johnson, Matthias Niessner

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

39 Scopus citations

Abstract

We apply style transfer on mesh reconstructions of indoor scenes. This enables VR applications like experiencing 3D environments painted in the style of a favorite artist. Style transfer typically operates on 2D images, making stylization of a mesh challenging. When optimized over a variety of poses, stylization patterns become stretched out and inconsistent in size. On the other hand, model-based 3D style transfer methods exist that allow stylization from a sparse set of images, but they require a network at inference time. To this end, we optimize an explicit texture for the reconstructed mesh of a scene and stylize it jointly from all available input images. Our depth- and angle-aware optimization leverages surface normal and depth data of the underlying mesh to create a uniform and consistent stylization for the whole scene. Our experiments show that our method creates sharp and detailed results for the complete scene without view-dependent artifacts. Through extensive ablation studies, we show that the proposed 3D awareness enables style transfer to be applied to the 3D domain of a mesh. Our method11https://lukashoel.github.io/stylemesh/ can be used to render a stylized mesh in real-time with traditional rendering pipelines.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages6188-6198
Number of pages11
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: 19 Jun 202224 Jun 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period19/06/2224/06/22

Keywords

  • 3D from multi-view and sensors
  • 3D from single images
  • RGBD sensors and analytics
  • Vision + graphics

Fingerprint

Dive into the research topics of 'StyleMesh: Style Transfer for Indoor 3D Scene Reconstructions'. Together they form a unique fingerprint.

Cite this