Abstract
A modified strain-hardening cementitious composite (SHCC) material, fabricated using corundum aggregates (SHCC-Cor), has been proposed for roadway applications as it offers high structural performance and high skid resistance. However, the acoustic performance of SHCC is unclear and has not been well studied in the past. Theoretically, SHCC may not provide the optimum solution in acoustic performance as it provides a low texture profile, high density, and low porosity. In this study, the acoustic performance of pavement slabs made of SHCC and modified SHCC-Cor are investigated using a nondestructive method to determine the surface roughness (macro texture) of slab surfaces. The pavement–tire noise level was then simulated using SPERoN software. As result, the noise level coming from the pavement made of SHCC could be up to 65 dB(A), while the noise level for SHCC-Cor increased up to 69.2 dB(A) because of the lower shape factor (G) due to a rougher surface as a result of the existence of corundum aggregate on the SHCC surface. The aeroacoustics were also increased compared to the SHCC slab. The modification of SHCC-Cor by introducing grooves (SHCC-Cor-Gro) successfully reduced the sound level coming from the vibration.
Original language | English |
---|---|
Pages (from-to) | 57-71 |
Number of pages | 15 |
Journal | Acoustics |
Volume | 5 |
Issue number | 1 |
DOIs | |
State | Published - Mar 2023 |
Keywords
- SHCC
- SPERON
- acoustic performance
- pavement
- pavement–tire noise
- road
- shape factor
- texture