Structured optimal transport

David Alvarez-Melis, Tommi S. Jaakkola, Stefanie Jegelka

Research output: Contribution to conferencePaperpeer-review

40 Scopus citations

Abstract

Optimal Transport has recently gained interest in machine learning for applications ranging from domain adaptation to sentence similarities or deep learning. Yet, its ability to capture frequently occurring structure beyond the “ground metric” is limited. In this work, we develop a nonlinear generalization of (discrete) optimal transport that is able to reflect much additional structure. We demonstrate how to leverage the geometry of this new model for fast algorithms, and explore connections and properties. Illustrative experiments highlight the benefit of the induced structured couplings for tasks in domain adaptation and natural language processing.

Original languageEnglish
Pages1771-1780
Number of pages10
StatePublished - 2018
Externally publishedYes
Event21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018 - Playa Blanca, Lanzarote, Canary Islands, Spain
Duration: 9 Apr 201811 Apr 2018

Conference

Conference21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018
Country/TerritorySpain
CityPlaya Blanca, Lanzarote, Canary Islands
Period9/04/1811/04/18

Fingerprint

Dive into the research topics of 'Structured optimal transport'. Together they form a unique fingerprint.

Cite this