Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs

Ulrich Bauer, Elizabeth Munch, Yusu Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

31 Scopus citations

Abstract

The Reeb graph is a construction that studies a topological space through the lens of a real valued function. It has been commonly used in applications, however its use on real data means that it is desirable and increasingly necessary to have methods for comparison of Reeb graphs. Recently, several metrics on the set of Reeb graphs have been proposed. In this paper, we focus on two: the functional distortion distance and the interleaving distance. The former is based on the Gromov Hausdorff distance, while the latter utilizes the equivalence between Reeb graphs and a particular class of cosheaves. However, both are defined by constructing a near-isomorphism between the two graphs of study. In this paper, we show that the two metrics are strongly equivalent on the space of Reeb graphs. Our result also implies the bottleneck stability for persistence diagrams in terms of the Reeb graph interleaving distance.

Original languageEnglish
Title of host publication31st International Symposium on Computational Geometry, SoCG 2015
EditorsJanos Pach, Janos Pach, Lars Arge
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Pages461-475
Number of pages15
ISBN (Electronic)9783939897835
DOIs
StatePublished - 1 Jun 2015
Event31st International Symposium on Computational Geometry, SoCG 2015 - Eindhoven, Netherlands
Duration: 22 Jun 201525 Jun 2015

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume34
ISSN (Print)1868-8969

Conference

Conference31st International Symposium on Computational Geometry, SoCG 2015
Country/TerritoryNetherlands
CityEindhoven
Period22/06/1525/06/15

Keywords

  • Functional distortion distance
  • Interleaving distance
  • Reeb graph

Fingerprint

Dive into the research topics of 'Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs'. Together they form a unique fingerprint.

Cite this