TY - GEN
T1 - Strong but Simple
T2 - 17th Asian Conference on Computer Vision, ACCV 2024
AU - Hümmer, Christoph
AU - Schwonberg, Manuel
AU - Zhou, Liangwei
AU - Cao, Hu
AU - Knoll, Alois
AU - Gottschalk, Hanno
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
PY - 2025
Y1 - 2025
N2 - Domain generalization (DG) remains a significant challenge for perception based on deep neural networks (DNNs), where domain shifts occur due to synthetic data, lighting, weather, or location changes. Vision-language models (VLMs) marked a large step for the generalization capabilities and have been already applied to various tasks. Very recently, first approaches utilized VLMs for domain generalized segmentation and object detection and obtained strong generalization. However, all these approaches rely on complex modules, feature augmentation frameworks or additional models. Surprisingly and in contrast to that, we found that simple fine-tuning of vision-language pre-trained models yields competitive or even stronger generalization results while being extremely simple to apply. Moreover, we found that vision-language pre-training consistently provides better generalization than the previous standard of vision-only pre-training. This challenges the standard of using ImageNet-based transfer learning for domain generalization. Fully fine-tuning a vision-language pre-trained model is capable of reaching the domain generalization SOTA when training on the synthetic GTA5 dataset. Moreover, we confirm this observation for object detection on a novel synthetic-to-real benchmark. We further obtain superior generalization capabilities by reaching 77.9% mIoU on the popular Cityscapes→ ACDC benchmark. We also found improved in-domain generalization, leading to an improved SOTA of 86.4% mIoU on the Cityscapes test set marking the first place on the leaderboard.
AB - Domain generalization (DG) remains a significant challenge for perception based on deep neural networks (DNNs), where domain shifts occur due to synthetic data, lighting, weather, or location changes. Vision-language models (VLMs) marked a large step for the generalization capabilities and have been already applied to various tasks. Very recently, first approaches utilized VLMs for domain generalized segmentation and object detection and obtained strong generalization. However, all these approaches rely on complex modules, feature augmentation frameworks or additional models. Surprisingly and in contrast to that, we found that simple fine-tuning of vision-language pre-trained models yields competitive or even stronger generalization results while being extremely simple to apply. Moreover, we found that vision-language pre-training consistently provides better generalization than the previous standard of vision-only pre-training. This challenges the standard of using ImageNet-based transfer learning for domain generalization. Fully fine-tuning a vision-language pre-trained model is capable of reaching the domain generalization SOTA when training on the synthetic GTA5 dataset. Moreover, we confirm this observation for object detection on a novel synthetic-to-real benchmark. We further obtain superior generalization capabilities by reaching 77.9% mIoU on the popular Cityscapes→ ACDC benchmark. We also found improved in-domain generalization, leading to an improved SOTA of 86.4% mIoU on the Cityscapes test set marking the first place on the leaderboard.
KW - Domain Generalization
KW - Object Detection
KW - Semantic Segmentation
UR - http://www.scopus.com/inward/record.url?scp=85213342737&partnerID=8YFLogxK
U2 - 10.1007/978-981-96-0972-7_27
DO - 10.1007/978-981-96-0972-7_27
M3 - Conference contribution
AN - SCOPUS:85213342737
SN - 9789819609710
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 463
EP - 484
BT - Computer Vision – ACCV 2024 - 17th Asian Conference on Computer Vision, Proceedings
A2 - Cho, Minsu
A2 - Laptev, Ivan
A2 - Tran, Du
A2 - Yao, Angela
A2 - Zha, Hongbin
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 8 December 2024 through 12 December 2024
ER -