Stroboscopic video microscopy with sub-nanometer accuracy for characterizing and monitoring MEMS

Andrej Voss, Lars Seyfert, Norbert Schwesinger, Werner Hemmert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Current state-of-the-art systems for measuring movements at a microscopic scale in MEMS mostly rely on laser Doppler vibrometry (LDV). However, a major downside of LDV is that only one point at a time can be tracked and only in the direction of the incident laser beam. On the other hand, stroboscopic video microscopy (SVM) allows monitoring the in-plane displacements of all points in the field of view simultaneously. Commercially available vibrometry systems often provide an SVM mode. However, their resolution typically ranges from several to tens of nanometers. In contrast, some experimental SVM systems described in literature have achieved resolutions down to tens of picometers. Here we compare the performance of our self-built SVM setup to a modern commercial LDV device in characterizing piezoelectric actuators made from sintered lead zirconate titanate (PZT). The samples were stimulated with sinusoidal signals to induce surface strain in all three directions of space. Maps of the induced strain fields were recorded in-plane with SVM and out-of-plane with LDV. Our measurements prove that SVM, as realized in our setup, can be a cost-effective alternative to LDV for monitoring and characterizing of MEMS with sub-nanometer accuracy. Especially at low frequencies and when applied to challenging samples, SVM can outperform LDV in terms of accuracy and time efficiency.

Original languageEnglish
Title of host publicationNondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XVI
EditorsH. Felix Wu, Andrew L. Gyekenyesi, Peter J. Shull, Tzuyang Yu
PublisherSPIE
ISBN (Electronic)9781510649699
DOIs
StatePublished - 2022
EventNondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XVI 2022 - Virtual, Online
Duration: 4 Apr 202210 Apr 2022

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12047
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceNondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XVI 2022
CityVirtual, Online
Period4/04/2210/04/22

Keywords

  • PZT
  • in-plane
  • laser Doppler vibrometry
  • stroboscopic

Fingerprint

Dive into the research topics of 'Stroboscopic video microscopy with sub-nanometer accuracy for characterizing and monitoring MEMS'. Together they form a unique fingerprint.

Cite this