Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar

Wael Ghada, Enric Casellas, Julia Herbinger, Albert Garcia-Benadí, Ludwig Bothmann, Nicole Estrella, Joan Bech, Annette Menzel

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Rain type classification into convective and stratiform is an essential step required to improve quantitative precipitation estimations by remote sensing instruments. Previous studies with Micro Rain Radar (MRR) measurements and subjective rules have been performed to classify rain events. However, automating this process by using machine learning (ML) models provides the advantages of fast and reliable classification with the possibility to classify rain minute by minute. A total of 20,979 min of rain data measured by an MRR at Das in northeast Spain were used to build seven types of ML models for stratiform and convective rain type classification. The proposed classification models use a set of 22 parameters that summarize the reflectivity, the Doppler velocity, and the spectral width (SW) above and below the so-called separation level (SL). This level is defined as the level with the highest increase in Doppler velocity and corresponds with the bright band in stratiform rain. A pre-classification of the rain type for each minute based on the rain microstructure provided by the collocated disdrometer was performed. Our results indicate that complex ML models, particularly tree-based ensembles such as xgboost and random forest which capture the interactions of different features, perform better than simpler models. Applying methods from the field of interpretable ML, we identified reflectivity at the lowest layer and the average spectral width in the layers below SL as the most important features. High reflectivity and low SW values indicate a higher probability of convective rain.

Original languageEnglish
Article number4563
JournalRemote Sensing
Volume14
Issue number18
DOIs
StatePublished - Sep 2022

Keywords

  • Micro Rain Radar (MRR)
  • classification
  • convective
  • decision trees
  • disdrometer
  • machine learning
  • naïve Bayes
  • random forest
  • stratiform
  • support vector machines
  • xgboost

Fingerprint

Dive into the research topics of 'Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar'. Together they form a unique fingerprint.

Cite this