TY - GEN
T1 - Strategy representation by decision trees in reactive synthesis
AU - Brázdil, Tomáš
AU - Chatterjee, Krishnendu
AU - Křetínský, Jan
AU - Toman, Viktor
N1 - Publisher Copyright:
© The Author(s) 2018.
PY - 2018
Y1 - 2018
N2 - Graph games played by two players over finite-state graphs are central in many problems in computer science. In particular, graph games with ω -regular winning conditions, specified as parity objectives, which can express properties such as safety, liveness, fairness, are the basic framework for verification and synthesis of reactive systems. The decisions for a player at various states of the graph game are represented as strategies. While the algorithmic problem for solving graph games with parity objectives has been widely studied, the most prominent data-structure for strategy representation in graph games has been binary decision diagrams (BDDs). However, due to the bit-level representation, BDDs do not retain the inherent flavor of the decisions of strategies, and are notoriously hard to minimize to obtain succinct representation. In this work we propose decision trees for strategy representation in graph games. Decision trees retain the flavor of decisions of strategies and allow entropy-based minimization to obtain succinct trees. However, decision trees work in settings (e.g., probabilistic models) where errors are allowed, and overfitting of data is typically avoided. In contrast, for strategies in graph games no error is allowed, and the decision tree must represent the entire strategy. We develop new techniques to extend decision trees to overcome the above obstacles, while retaining the entropy-based techniques to obtain succinct trees. We have implemented our techniques to extend the existing decision tree solvers. We present experimental results for problems in reactive synthesis to show that decision trees provide a much more efficient data-structure for strategy representation as compared to BDDs.
AB - Graph games played by two players over finite-state graphs are central in many problems in computer science. In particular, graph games with ω -regular winning conditions, specified as parity objectives, which can express properties such as safety, liveness, fairness, are the basic framework for verification and synthesis of reactive systems. The decisions for a player at various states of the graph game are represented as strategies. While the algorithmic problem for solving graph games with parity objectives has been widely studied, the most prominent data-structure for strategy representation in graph games has been binary decision diagrams (BDDs). However, due to the bit-level representation, BDDs do not retain the inherent flavor of the decisions of strategies, and are notoriously hard to minimize to obtain succinct representation. In this work we propose decision trees for strategy representation in graph games. Decision trees retain the flavor of decisions of strategies and allow entropy-based minimization to obtain succinct trees. However, decision trees work in settings (e.g., probabilistic models) where errors are allowed, and overfitting of data is typically avoided. In contrast, for strategies in graph games no error is allowed, and the decision tree must represent the entire strategy. We develop new techniques to extend decision trees to overcome the above obstacles, while retaining the entropy-based techniques to obtain succinct trees. We have implemented our techniques to extend the existing decision tree solvers. We present experimental results for problems in reactive synthesis to show that decision trees provide a much more efficient data-structure for strategy representation as compared to BDDs.
UR - http://www.scopus.com/inward/record.url?scp=85045835559&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-89960-2_21
DO - 10.1007/978-3-319-89960-2_21
M3 - Conference contribution
AN - SCOPUS:85045835559
SN - 9783319899596
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 385
EP - 407
BT - Tools and Algorithms for the Construction and Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Proceedings
A2 - Beyer, Dirk
A2 - Huisman, Marieke
PB - Springer Verlag
T2 - 24th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2018 Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018
Y2 - 14 April 2018 through 20 April 2018
ER -