StoDIP: Efficient 3D MRF Image Reconstruction with Deep Image Priors and Stochastic Iterations

Perla Mayo, Matteo Cencini, Carolin M. Pirkl, Marion I. Menzel, Michela Tosetti, Bjoern H. Menze, Mohammad Golbabaee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Magnetic Resonance Fingerprinting (MRF) is a time-efficient approach to quantitative MRI for multiparametric tissue mapping. The reconstruction of quantitative maps requires tailored algorithms for removing aliasing artefacts from the compressed sampled MRF acquisitions. Within approaches found in the literature, many focus solely on two-dimensional (2D) image reconstruction, neglecting the extension to volumetric (3D) scans despite their higher relevance and clinical value. A reason for this is that transitioning to 3D imaging without appropriate mitigations presents significant challenges, including increased computational cost and storage requirements, and the need for large amount of ground-truth (artefact-free) data for training. To address these issues, we introduce StoDIP, a new algorithm that extends the ground-truth-free Deep Image Prior (DIP) reconstruction to 3D MRF imaging. StoDIP employs memory-efficient stochastic updates across the multicoil MRF data, a carefully selected neural network architecture, as well as faster nonuniform FFT (NUFFT) transformations. This enables a faster convergence compared against a conventional DIP implementation without these features. Tested on a dataset of whole-brain scans from healthy volunteers, StoDIP demonstrated superior performance over the ground-truth-free reconstruction baselines, both quantitatively and qualitatively.

Original languageEnglish
Title of host publicationMachine Learning in Medical Imaging - 15th International Workshop, MLMI 2024, Held in Conjunction with MICCAI 2024, Proceedings
EditorsXuanang Xu, Zhiming Cui, Kaicong Sun, Islem Rekik, Xi Ouyang
PublisherSpringer Science and Business Media Deutschland GmbH
Pages128-137
Number of pages10
ISBN (Print)9783031732928
DOIs
StatePublished - 2025
Externally publishedYes
Event15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024 - Marrakesh, Morocco
Duration: 6 Oct 20246 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15242 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024
Country/TerritoryMorocco
CityMarrakesh
Period6/10/246/10/24

Keywords

  • compressed sensing
  • deep image prior
  • iterative algorithms
  • magnetic resonance fingerprinting
  • quantiative MRI

Fingerprint

Dive into the research topics of 'StoDIP: Efficient 3D MRF Image Reconstruction with Deep Image Priors and Stochastic Iterations'. Together they form a unique fingerprint.

Cite this