Stochastic optimization for rigid point set registration

Chavdar Papazov, Darius Burschka

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

In this paper we propose a new method for pairwise rigid point set registration. We pay special attention to noise robustness, outlier resistance and global optimal alignment. The problem of registering two point clouds in space is converted to a minimization of a nonlinear cost function. We propose a cost function that aims to reduce the impact of noise and outliers. Its definition is based on the input point sets and is directly related to the quality of a concrete rigid transform between them. In order to achieve a global optimal registration, without the need of a good initial alignment, we develop a new stochastic approach for global minimization. Tests on a variety of point sets show that the proposed registration algorithm performs very well on noisy, outlier corrupted and incomplete data.

Original languageEnglish
Title of host publicationAdvances in Visual Computing - 5th International Symposium, ISVC 2009, Proceedings
Pages1043-1054
Number of pages12
EditionPART 1
DOIs
StatePublished - 2009
Event5th International Symposium on Advances in Visual Computing, ISVC 2009 - Las Vegas, NV, United States
Duration: 30 Nov 20092 Dec 2009

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 1
Volume5875 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference5th International Symposium on Advances in Visual Computing, ISVC 2009
Country/TerritoryUnited States
CityLas Vegas, NV
Period30/11/092/12/09

Fingerprint

Dive into the research topics of 'Stochastic optimization for rigid point set registration'. Together they form a unique fingerprint.

Cite this