TY - JOUR
T1 - STIM1/ORAI1-mediated Ca2+ influx regulates enolase-1 exteriorization
AU - Didiasova, Miroslava
AU - Zakrzewicz, Dariusz
AU - Magdolen, Viktor
AU - Nagaraj, Chandran
AU - Bálint, Zoltán
AU - Rohde, Manfred
AU - Preissner, Klaus T.
AU - Wygrecka, Malgorzata
N1 - Publisher Copyright:
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2015/5/8
Y1 - 2015/5/8
N2 - Tumor cells use broad spectrum proteolytic activity of plasmin to invade tissue and form metastatic foci. Cell surface-associated enolase-1 (ENO-1) enhances plasmin formation and thus participates in the regulation of pericellular proteolysis. Although increased levels of cell surface bound ENO-1 have been described in different types of cancer, the molecular mechanism responsible for ENO-1 exteriorization remains elusive. In the present study, increased ENO-1 protein levels were found in ductal breast carcinoma and on the cell surface of highly metastatic breast cancer cell line MDA-MB-231. Elevated cell surface-associated ENO-1 expression correlated with augmented MDA-MB-231 cell migratory and invasive properties. Exposure of MDA-MB-231 cells to LPS potentiated translocation of ENO-1 to the cell surface and its release into the extracellular space in the form of exosomes. These effects were independent of de novo protein synthesis and did not require the classical endoplasmic reticulum/Golgi pathway. LPS-triggered ENO-1 exteriorization was suppressed by pretreatment of MDA-MB-231 cells with the Ca2+ chelator BAPTA or an inhibitor of endoplasmic reticulum Ca2+-ATPase pump, cyclopiazonic acid. In line with these observations, the stromal interaction molecule (STIM) 1 and the calcium release-activated calcium modulator (ORAI) 1-mediated store-operated Ca2+ entry were found to regulate LPS-induced ENO-1 exteriorization. Pharmacological blockage or knockdown of STIM1 or ORAI1 reduced ENO-1-dependent migration of MDA-MB-231 cells. Collectively, our results demonstrate the pivotal role of store-operated Ca2+ channel-mediated Ca2+ influx in the regulation of ENO-1 exteriorization and thus in the modulation of cancer cell migratory and invasive properties.
AB - Tumor cells use broad spectrum proteolytic activity of plasmin to invade tissue and form metastatic foci. Cell surface-associated enolase-1 (ENO-1) enhances plasmin formation and thus participates in the regulation of pericellular proteolysis. Although increased levels of cell surface bound ENO-1 have been described in different types of cancer, the molecular mechanism responsible for ENO-1 exteriorization remains elusive. In the present study, increased ENO-1 protein levels were found in ductal breast carcinoma and on the cell surface of highly metastatic breast cancer cell line MDA-MB-231. Elevated cell surface-associated ENO-1 expression correlated with augmented MDA-MB-231 cell migratory and invasive properties. Exposure of MDA-MB-231 cells to LPS potentiated translocation of ENO-1 to the cell surface and its release into the extracellular space in the form of exosomes. These effects were independent of de novo protein synthesis and did not require the classical endoplasmic reticulum/Golgi pathway. LPS-triggered ENO-1 exteriorization was suppressed by pretreatment of MDA-MB-231 cells with the Ca2+ chelator BAPTA or an inhibitor of endoplasmic reticulum Ca2+-ATPase pump, cyclopiazonic acid. In line with these observations, the stromal interaction molecule (STIM) 1 and the calcium release-activated calcium modulator (ORAI) 1-mediated store-operated Ca2+ entry were found to regulate LPS-induced ENO-1 exteriorization. Pharmacological blockage or knockdown of STIM1 or ORAI1 reduced ENO-1-dependent migration of MDA-MB-231 cells. Collectively, our results demonstrate the pivotal role of store-operated Ca2+ channel-mediated Ca2+ influx in the regulation of ENO-1 exteriorization and thus in the modulation of cancer cell migratory and invasive properties.
UR - http://www.scopus.com/inward/record.url?scp=84929008657&partnerID=8YFLogxK
U2 - 10.1074/jbc.M114.598425
DO - 10.1074/jbc.M114.598425
M3 - Article
C2 - 25805497
AN - SCOPUS:84929008657
SN - 0021-9258
VL - 290
SP - 11983
EP - 11999
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 19
ER -