State feedback damping control for a multi DOF variable stiffness robot arm

Florian Petit, Alin Albu-Schäffer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

70 Scopus citations

Abstract

The concept of variable stiffness actuation (VSA) for robotic joints promises advantages regarding robustness, energy efficiency, and task adaptability. The VS joints developed at DLR show very low intrinsic damping for efficient energy storage and retrieval whereas the desired damping behavior for task execution needs to be implemented in control. Robotic arms with multiple VS joints, as for example the DLR Hand Arm System, ask for advanced control algorithms which can cope with the elastic joints and the multi-input multi-output (MIMO) system properties of the mechanical setup. We propose a MIMO controller for flexible joint robots based upon an eigenmode decoupling approach. For robustness reasons, the controller is designed to modify the intrinsic plant properties as little as possible while attaining the desired damping. A gain design algorithm is proposed. The controller is validated in simulations and experiments.

Original languageEnglish
Title of host publication2011 IEEE International Conference on Robotics and Automation, ICRA 2011
Pages5561-5567
Number of pages7
DOIs
StatePublished - 2011
Externally publishedYes
Event2011 IEEE International Conference on Robotics and Automation, ICRA 2011 - Shanghai, China
Duration: 9 May 201113 May 2011

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2011 IEEE International Conference on Robotics and Automation, ICRA 2011
Country/TerritoryChina
CityShanghai
Period9/05/1113/05/11

Fingerprint

Dive into the research topics of 'State feedback damping control for a multi DOF variable stiffness robot arm'. Together they form a unique fingerprint.

Cite this