TY - GEN
T1 - State estimation for highly dynamic flying systems using key frame odometry with varying time delays
AU - Schmid, Korbinian
AU - Ruess, Felix
AU - Suppa, Michael
AU - Burschka, Darius
PY - 2012
Y1 - 2012
N2 - System state estimation is an essential part for robot navigation and control. A combination of Inertial Navigation Systems (INS) and further exteroceptive sensors such as cameras or laser scanners is widely used. On small robotic systems with limitations in payload, power consumption and computational resources the processing of exteroceptive sensor data often introduces time delays which have to be considered in the sensor data fusion process. These time delays are especially critical in the estimation of system velocity. In this paper we present a state estimation framework fusing an INS with time delayed, relative exteroceptive sensor measurements. We evaluate its performance for a highly dynamic flight system trajectory including a flip. The evolution of velocity and position errors for varying measurement frequencies from 15Hz to 1Hz and time delays up to 1s is shown in Monte Carlo simulations. The filter algorithm with key frame based odometry permits an optimal, local drift free navigation while still being computationally tractable on small onboard computers. Finally, we present the results of the algorithm applied to a real quadrotor by flying from inside a house out through the window.
AB - System state estimation is an essential part for robot navigation and control. A combination of Inertial Navigation Systems (INS) and further exteroceptive sensors such as cameras or laser scanners is widely used. On small robotic systems with limitations in payload, power consumption and computational resources the processing of exteroceptive sensor data often introduces time delays which have to be considered in the sensor data fusion process. These time delays are especially critical in the estimation of system velocity. In this paper we present a state estimation framework fusing an INS with time delayed, relative exteroceptive sensor measurements. We evaluate its performance for a highly dynamic flight system trajectory including a flip. The evolution of velocity and position errors for varying measurement frequencies from 15Hz to 1Hz and time delays up to 1s is shown in Monte Carlo simulations. The filter algorithm with key frame based odometry permits an optimal, local drift free navigation while still being computationally tractable on small onboard computers. Finally, we present the results of the algorithm applied to a real quadrotor by flying from inside a house out through the window.
UR - http://www.scopus.com/inward/record.url?scp=84872289855&partnerID=8YFLogxK
U2 - 10.1109/IROS.2012.6385969
DO - 10.1109/IROS.2012.6385969
M3 - Conference contribution
AN - SCOPUS:84872289855
SN - 9781467317375
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 2997
EP - 3004
BT - 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012
T2 - 25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012
Y2 - 7 October 2012 through 12 October 2012
ER -