TY - JOUR
T1 - Stable, one-dimensional suspended and supported monatomic chains of pnictogens
T2 - A metal-insulator framework
AU - Ersan, F.
AU - Aktürk, E.
AU - Ciraci, S.
N1 - Publisher Copyright:
© 2019 the Owner Societies.
PY - 2019
Y1 - 2019
N2 - Group-VA elements P, As, Sb, and Bi can construct free-standing, stable zigzag monatomic chain structures, which show unusual properties. They are normally semimetals with bands crossing at the Fermi level, but a very narrow gap opens due to spin-orbit coupling. They attain one quantum of conductance under a small bias potential; Bi, being an exception, attains two quanta of conductance. Finite size chains are magnetic semiconductors; their magnetic moments and the order of spin states show an even-odd disparity depending on the number of chain atoms. Variations of the HOMO-LUMO band gaps depending on the spin polarization and the size of the finite chains offer critical tunability. In the periodic, zigzag compound chains, a small band gap opens at the Fermi level. The mysterious zigzag geometry, cohesion, stability and band order of all these chains are well-explained by a simple bond model. When placed on the parent or other monolayers like graphene, h-BN and GaSe, these chains become weakly bound and construct a 1D metallic channel. The artificial grids or networks of these metallic chains on the insulating substrates can constitute metal-insulator frameworks of desired geometry. The zigzag phosphorene chain, having the highest stability, remains stable even at full coverage of adsorbates like H and OH, whereas other chains dissociate. While P-chains can be synthesized on GaSe and graphene substrates, phosphorene nanoribbons can transform into suspended chains under excessive tensile strain. Additionally, we showed that As, Sb, and Bi zigzag chains are weakly bound to their parent monolayers and remain stable. Nitrogen monatomic chains, on the other hand, are prone to instability. The diverse properties unveiled in this study based on the density functional method offer tunability through electric fields and strain.
AB - Group-VA elements P, As, Sb, and Bi can construct free-standing, stable zigzag monatomic chain structures, which show unusual properties. They are normally semimetals with bands crossing at the Fermi level, but a very narrow gap opens due to spin-orbit coupling. They attain one quantum of conductance under a small bias potential; Bi, being an exception, attains two quanta of conductance. Finite size chains are magnetic semiconductors; their magnetic moments and the order of spin states show an even-odd disparity depending on the number of chain atoms. Variations of the HOMO-LUMO band gaps depending on the spin polarization and the size of the finite chains offer critical tunability. In the periodic, zigzag compound chains, a small band gap opens at the Fermi level. The mysterious zigzag geometry, cohesion, stability and band order of all these chains are well-explained by a simple bond model. When placed on the parent or other monolayers like graphene, h-BN and GaSe, these chains become weakly bound and construct a 1D metallic channel. The artificial grids or networks of these metallic chains on the insulating substrates can constitute metal-insulator frameworks of desired geometry. The zigzag phosphorene chain, having the highest stability, remains stable even at full coverage of adsorbates like H and OH, whereas other chains dissociate. While P-chains can be synthesized on GaSe and graphene substrates, phosphorene nanoribbons can transform into suspended chains under excessive tensile strain. Additionally, we showed that As, Sb, and Bi zigzag chains are weakly bound to their parent monolayers and remain stable. Nitrogen monatomic chains, on the other hand, are prone to instability. The diverse properties unveiled in this study based on the density functional method offer tunability through electric fields and strain.
UR - http://www.scopus.com/inward/record.url?scp=85068855183&partnerID=8YFLogxK
U2 - 10.1039/c9cp02474c
DO - 10.1039/c9cp02474c
M3 - Article
C2 - 31231739
AN - SCOPUS:85068855183
SN - 1463-9076
VL - 21
SP - 14832
EP - 14845
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 27
ER -