Spherical cNNs on unstructured grids

Chiyu Jiang, Prabhat, Jingwei Huang, Philip Marcus, Karthik Kashinath, Matthias Nießner

Research output: Contribution to conferencePaperpeer-review

48 Scopus citations

Abstract

We present an efficient convolution kernel for Convolutional Neural Networks (CNNs) on unstructured grids using parameterized differential operators while focusing on spherical signals such as panorama images or planetary signals. To this end, we replace conventional convolution kernels with linear combinations of differential operators that are weighted by learnable parameters. Differential operators can be efficiently estimated on unstructured grids using one-ring neighbors, and learnable parameters can be optimized through standard back-propagation. As a result, we obtain extremely efficient neural networks that match or outperform state-of-the-art network architectures in terms of performance but with a significantly smaller number of network parameters. We evaluate our algorithm in an extensive series of experiments on a variety of computer vision and climate science tasks, including shape classification, climate pattern segmentation, and omnidirectional image semantic segmentation. Overall, we (1) present a novel CNN approach on unstructured grids using parameterized differential operators for spherical signals, and (2) show that our unique kernel parameterization allows our model to achieve the same or higher accuracy with significantly fewer network parameters.

Original languageEnglish
StatePublished - 2019
Event7th International Conference on Learning Representations, ICLR 2019 - New Orleans, United States
Duration: 6 May 20199 May 2019

Conference

Conference7th International Conference on Learning Representations, ICLR 2019
Country/TerritoryUnited States
CityNew Orleans
Period6/05/199/05/19

Fingerprint

Dive into the research topics of 'Spherical cNNs on unstructured grids'. Together they form a unique fingerprint.

Cite this