TY - GEN
T1 - Spectral graph convolutions for population-based disease prediction
AU - Parisot, Sarah
AU - Ktena, Sofia Ira
AU - Ferrante, Enzo
AU - Lee, Matthew
AU - Moreno, Ricardo Guerrerro
AU - Glocker, Ben
AU - Rueckert, Daniel
N1 - Publisher Copyright:
© Springer International Publishing AG 2017.
PY - 2017
Y1 - 2017
N2 - Exploiting the wealth of imaging and non-imaging information for disease prediction tasks requires models capable of representing, at the same time, individual features as well as data associations between subjects from potentially large populations. Graphs provide a natural framework for such tasks, yet previous graph-based approaches focus on pairwise similarities without modelling the subjects’ individual characteristics and features. On the other hand, relying solely on subject-specific imaging feature vectors fails to model the interaction and similarity between subjects, which can reduce performance. In this paper, we introduce the novel concept of Graph Convolutional Networks (GCN) for brain analysis in populations, combining imaging and non-imaging data. We represent populations as a sparse graph where its vertices are associated with image-based feature vectors and the edges encode phenotypic information. This structure was used to train a GCN model on partially labelled graphs, aiming to infer the classes of unlabelled nodes from the node features and pairwise associations between subjects. We demonstrate the potential of the method on the challenging ADNI and ABIDE databases, as a proof of concept of the benefit from integrating contextual information in classification tasks. This has a clear impact on the quality of the predictions, leading to 69.5% accuracy for ABIDE (outperforming the current state of the art of 66.8%) and 77% for ADNI for prediction of MCI conversion, significantly outperforming standard linear classifiers where only individual features are considered.
AB - Exploiting the wealth of imaging and non-imaging information for disease prediction tasks requires models capable of representing, at the same time, individual features as well as data associations between subjects from potentially large populations. Graphs provide a natural framework for such tasks, yet previous graph-based approaches focus on pairwise similarities without modelling the subjects’ individual characteristics and features. On the other hand, relying solely on subject-specific imaging feature vectors fails to model the interaction and similarity between subjects, which can reduce performance. In this paper, we introduce the novel concept of Graph Convolutional Networks (GCN) for brain analysis in populations, combining imaging and non-imaging data. We represent populations as a sparse graph where its vertices are associated with image-based feature vectors and the edges encode phenotypic information. This structure was used to train a GCN model on partially labelled graphs, aiming to infer the classes of unlabelled nodes from the node features and pairwise associations between subjects. We demonstrate the potential of the method on the challenging ADNI and ABIDE databases, as a proof of concept of the benefit from integrating contextual information in classification tasks. This has a clear impact on the quality of the predictions, leading to 69.5% accuracy for ABIDE (outperforming the current state of the art of 66.8%) and 77% for ADNI for prediction of MCI conversion, significantly outperforming standard linear classifiers where only individual features are considered.
UR - http://www.scopus.com/inward/record.url?scp=85029493265&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-66179-7_21
DO - 10.1007/978-3-319-66179-7_21
M3 - Conference contribution
AN - SCOPUS:85029493265
SN - 9783319661780
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 177
EP - 185
BT - Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
A2 - Maier-Hein, Lena
A2 - Franz, Alfred
A2 - Jannin, Pierre
A2 - Duchesne, Simon
A2 - Descoteaux, Maxime
A2 - Collins, D. Louis
PB - Springer Verlag
T2 - 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
Y2 - 11 September 2017 through 13 September 2017
ER -