Spatial statistics based feature descriptor for RF ultrasound data

T. Klein, M. Hansson, N. Navab

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

In this paper we present a feature descriptor, based on a Markov random field (MRF) texture model, for radio-frequency (RF) ultrasound data. The proposed approach combines global data statistics in terms of a maximum-likelihood-estimated (MLE) distribution with local pattern characteristics employing MRF interaction parameters. This combining approach facilitates the encoding of the underlying nature of the ultrasound envelope data and therefore represents a powerful feature descriptor. Applicability and performance is showcased on RF data from a human neck.

Original languageEnglish
Title of host publication2011 8th IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, ISBI'11
Pages33-36
Number of pages4
DOIs
StatePublished - 2011
Event2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11 - Chicago, IL, United States
Duration: 30 Mar 20112 Apr 2011

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11
Country/TerritoryUnited States
CityChicago, IL
Period30/03/112/04/11

Keywords

  • Auto-model
  • Feature Descriptor
  • Markov Random Field
  • RF ultrasound
  • Ultrasound

Fingerprint

Dive into the research topics of 'Spatial statistics based feature descriptor for RF ultrasound data'. Together they form a unique fingerprint.

Cite this